to influence the experimental results. This
list will be an aid in setting up the original ex-
periment and also in carrying the experiment
further in case the original analysis shows that
the important variables were not covered. In
making up this list, the engineer should draw
not only on his own technical information
and knowledge of the job but also on informa-
tion which can be contributed by shop super-
visors and others. The list should include not
only the theoretical variables but also the prac-
tical shop-type variables which experience or
capability studies have indicated may be
present.

In particular, be sure to include the variables
which may be associated with processing opera-
tions such as cleaning, heat treating, method of
stacking material in furnaces or boats, etc. The
longer the list of possible variables, the better.

Select from this list four or five variables to
be included in the experiment. The experiment
will be most successful if the first variables
chosen have fairly large effects. While we can-
not be sure in advance just what these vari-
ables are, there are usually certain reasons to
suppose that one variable is potentially more
important than another. Attempt to select the
variables in the order of their probable impor-
tance.

On the other hand, having made every reason-
able effort to select important variables at the
beginning, do not be unduly concerned about the
possibility of choosing the wrong variables. The
initial experiment will warn you, by showing a
large residual, if there are variables in the
process larger than the ones you have selected
for study. In that case, go back to the original
list, pick out another set of variables which
may prove to be productive and set up another
experiment.

Your judgment of the variables which should
be included will be considerably sharpened
after the first experiment is run.

B-8.5 Disposing of the variables not
included in the experiment
All the variables which are not to be studied
formally must be dropped out statistically so
they will be unable to affect the conclusions.
There are two methods of doing this:

(1) Randomize the order in which the ex-
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perimental results are obtained so that
any unidentified variables which happen to
be present will have an equal chance of
affecting all portions of the data. To do
this, first set up the experiment in boxes
as shown on page 92 and then use some
random method of assuring that the boxes
will be filled in an unbiased order. Methods
of doing this are given in paragraph B-8.6.

(2) If it is convenient and practical, arrange
to hold constant some of the variables
which are not to be studied. For example,
if you do not wish to study the possible
effect of various machines, arrange to run
the experiment on only one machine. Tem-
peratures, pressures, the composition of
chemical baths, etc., can often be held con-
stant or essentially so.

On the other hand, the experimenter
should be careful not to assume that vari-
ables are constant without sufficient evi-
dence. A single machine may behave dif-
ferently depending on how it is set up or on
its state of repair. The experimenter him-
self may behave differently according to
his physical or emotional state or according
to the time of day. We frequently find
that conditions which we believed to be
constant were actually varying over quite
a wide range.

Even where it is possible to hold some of
the variables constant, it may be unde-
sirable to do so because of the fact that all
of the elements in the going process will not
be represented.

B-8.6 Methods of introducing randomness
into the experiment

(1) First Method

Throw a die or pair of dice and note the num-
ber which comes up. Start counting the boxes
in the upper left-hand corner of the design and
fill in first the box which corresponds to the
number on the dice. This can be indicated by
writing the word ‘“first”’ in the appropriate box.
Then throw the dice again and count off more
boxes in accordance with the indicated num-
ber. Write in this box “second.” When you
have counted off all the boxes in the design,
continue again with the upper left-hand corner
but this time skip any boxes which have al-



ready been filled. Continue in this manner
until all the parts of the experiment have been
assigned.

In conducting the experiment, set up first the
combination of conditions corresponding to the
box marked “first” and run the necessary num-

ber of units. Then set up the conditiors for the
box marked ‘‘second’” and run the necessary
units, etc. This will tend to keep any par-
ticular portion of the data from being influenced
by the known or unknown variables which come
and go in a process with time. It is unlikely,
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for example, that one of the unknown variables
would happen to affect all of the data under
factor Al and none of the data under factor A2.

(2) Second Method

Write on cards or slips of paper all the com-
binations of variables to be represented in the
experiment. For example:

A1B1C1D1
A1B1C2D1 ete.

Shuffle the cards thoroughly and put them
together to form a deck. Set up first the com-
bination of conditions shown on the top card in
the deck and run the necessary number of units.
Then continue with the next card and so on.
This will make sure that the data are obtained
in random order and will help to keep unan-
ticipated variables from introducing an un-
expected bias.

(3) Third Method

Use a table of random numbers to determine
the order in which the portions of the experi-
ment should be run. A typical page from one of
the published tables is shown in Figure 110.
The table is used as follows:

Starting at random at any point in the
table, take the first digit you find and
count off that number of boxes in the ex-
perimental design. Write the word “first”
in the indicated box. Then take the digit
directly below and continue in this manner,
using the digits in exactly the same way as
the numbers which came up on the dice in
Method (1).

The table of random numbers can also be
used in other ways. Take the digits verti-
cally or horizontally. Take the first
column in the separated blocks of five
columns or alternatively take the last
column, the fourth column, etc. Take
either the last digit, the next to the last
digit, pairs of two digits in combination,
and so on. It is also possible to take the
numbers in diagonal rows: for example, 15,
81, 05, 63, etc. in Figure 110. One can
start at the bottom and read up, start at
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the right-hand side and read across toward
the left, skip numbers in any way desired,
taking every fourth pair, every tenth in-
dividual digit, etc.

Because of the large number of ways in
which the table can be used, a single ta-
ble of the type shown in Figure 110 can be
used indefinitely without introducing non-
random patterns into the data.

Other methods of ensuring randomness in
the results may occur to the engineer. He
should avoid, however, attempting to make
a ‘“hit-and-miss” or haphazard assignment of
the boxes. Because of the strong psychological
tendency of a human being to repeat patterns,
it is virtually impossible to ensure randomness
without the aid of something which is depen-
dent directly on the laws of chance. For ex-
ample, a truly random set of numbers will re-
peat digits in succession, or alternate even and
odd digits, more frequently than a person who
is attempting to give numbers at random.

B-8.7 Methods of handling abnormal data

Experiments are frequently disturbed by the
accidental loss of a unit which was to have been
used for one of the boxes. Where possible, the
experimenter should forestall this possibility by
running more units than will be essential for
the experiment and select from this group at
random as described on page 113. Occasion-
ally, however, it may be so expensive to produce
the units or obtain measurements that provision
for additional units is out of the question. In
that case, the engineer should do one of the
following things to take care of the gap in the
data:

(a) Omit the measurement completely and
leave a gap in the plotting.

(b) Fill in an arbitrary value if necessary by
calculations based on other numbers in
the experiment. See Reference No. 5.

A second common experience is the obtaining
of a measurement which looks like a “freak.”
This should be handled as in the case of any
data in a process capability study. (See pages



52-53). The experimenter should label the
measurement in such a way as to identify it
but should not, in general, attempt to eliminate
it from the data.

In handling freaks on experimental charts,
keep in mind the following points:

(1) In view of the small total quantity of
data, each single measurement carries a
large proportion of the information. Do
not overlook the possibility that certain
combinations of variables may tend to
produce the condition you are tempted to
call a “freak.”

(2) Since the data in a designed experiment
are arranged and rearranged many times
in order to study the different factors in
different combinations, a single freak is
likely to appear in several different ways.
Be careful not to conclude from this that
the entire process is full of freaks.

B-8.8 Protecting the Identification of the
experimental units

Since all the conclusions which will be ob-
tained from the experiment depend upon care-
ful and precise identification of the measure-
ments, the experimenter must take constant
precautions to preserve the necessary identifi-
cation. Ordinarily at least part of the process-
ing and handling will be done by the shop, or by
other people who are not directly responsible
for the experiment. An inadvertent mixup in
the units, or the processing of the A1B2 units
at the temperature which was planned for
A1B1, may make it impossible to obtain useful
conclusions.

In all cases, the experimenter should either
follow through all units in the experiment him-
self, or make sure that others who are doing
this for him have been carefully instructed.
Precautions of this kind invariably pay off in
more reliable and more conclusive results.
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PART C
Specifications

C-1 SPECIFICATIONS IN
GENERAL

In manufacturing processes, we are interested
in the characteristics of each and every unit
produced. Even when we attempt to study the
process by means of samples, as in process capa-
bility studies or shop control charts, we are
really interested in the total distribution of in-
dividuals and are using the samples as a means
to this end. Specifications are stated by design
engineers or product engineers in an attempt to
set up desirable restrictions on:

(a) the individual units, or
(b) the distribution of individual units,

or both.
Specifications tend to fall into three basic
types.

Type A. The specification states a limit or
other requirement which applies to each unit of
product individually regardless of other units
in the same product. For example: “The
length of the part shall be .125” = .003".”
“The width of the groove shall not exceed
375" Product is considered to conform to
such specifications if each individual unit is
on or inside the limit, even if all units are
exactly at the limit.

Type B. The specification defines the dis-
tributicn which the product must have in
order to be acceptable. For example: “The
average of the product shall not be higher than
.5 millivolt and the individual units shall be
distributed in a natural manner around this
average with a spread not to exceed =+.03
millivolt.” Such specifications are sometimes
spoken of as ‘‘distribution requirements.”
They may or may not be accompanied by
limits of Type A which apply to the individual
pieces.

<+

Occasionally, requirements of this type are
specified in terms of X and R charts. That is,
the specification states the centerline and con-
trol limits for an X and R chart and the prod-
uct is acceptable as long as random samples
from the product show control on this chart.

Type C. The specification states a require-
ment which must be met by most of the prod-
uct but allows a certain percentage of units to
exceed the requirement. For example: ‘“The
resistance shall not exceed 173 ohms. How-
ever, product shall be considered acceptable if
not more than 2%, exceeds this limit provided
no units exceed 178 ohms.”

Such requirements are sometimes referred to
as ‘“‘product tolerance” requirements. When
the Government specifies the AQL which a
given product must meet, this is in effect a
Type C specification.

On most products the majority of specifica~
tions are of Type A. However, the number of
Type B specifications is gradually increasing.
The engineer should be aware that many
specifications are stated as if they were of Type
A and yet the designer has in mind a distribu-~
tion which he expects the product to meet.
Such requirements are, in the mind of the de-
signer, specifications of Type B.

In a quality control program there are many
advantages in working with Type B specifica-
tions. ’

C-2 RELATIONSHIP BETWEEN
PROCESS AND
SPECIFICATION

To make a valid comparison between a proc-
ess and a specification, it is necessary to have an
X and R chart with both X and R in eontrol.
Follow the directions on page 56 to find
how the process distribution is related to the
specified limits. If necessary, make calculations
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as shown on pages 58-60 in order to deter-
mine, more or less accurately, how much of the
distribution can be expected to fall outside of
limits. There are four basic relationships which
may exist between the process and its specifica-
tions, as follows.

(1) The spread of the process may be less than

the difference between the specified mazimum
and minimum, with the process safely
centered. See Figure 111.

Possible action:

a. Maintain control against these standard
values.

b. Consider the use of modified. control
limits for shop charts as explained on
pages 195-196.

c. Consider the possibility of reducing in-
spection as explained on page 274.

(2) The spread of the process may be just equal

to the difference between the specified
mazimum and minimum. See Figure 112.

Possible action:

a. Provide for constant checking of the
process to keep it centered.

b. Provide for sorting the product when
the distribution shifts.

c. Attempt to reduce the process spread
through a designed experiment.

d. If possible, get wider specifications.

(3) The spread of the process may be less than

the difference between the specified mazimum
and minimum, but the process may be off-
center. See Figure 113.

Possible action:

a. Try to center the distribution at a point
safely within the specified limits. Main-
tain control at that point.

b. If the shop is unable to center the dis-
tribution within limits, and if the present
level does not produce a good product,
write this down as unfinished business.
Put a control chart in the shop and study

Max. Max.
i L -
e~ e~ T ___= ~ _ _ _
—— -
Min. Min.
Fig. 111. Process narrower than specified limits.
Max. Max.
—_— P
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_> :
Min. Min.
TN e T A T N
Y Y e o __ .
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Fig. 112. Process spread equal to specified limits.



it regularly at your quality control meet-
ings. If necessary, design an experi-
ment to discover what can be used to
make the process shift.

Meanwhile provide for operational
sorting until the necessary information
is obtained. Don’t give up until you
get this problem solved.

c. Determine whether the specification
nominal can be shifted without adverse
effect on the product. If so, take steps
to get the specification changed.

It sometimes happens that a distribution
cannot be shifted to meet one specification
without causing failures to meet another
specification. In that case, there may be
correlation between the characteristics, and
the two specifications may be incom-
patible. Put a control chart on each charac-
teristic and study the charts together. In-
clude both characteristics in any designed

make it possible to find the optimum com-
bination of distributions and maximize
yields on both characteristics simultaneously.

(4) The spread of the process may be greater
than the difference between the specified
mazimum and mintmum. See Figure 114.

Possible action:

a. Try to open the specifications.

b. Try to reduce the spread of the process
by running a designed experiment.

¢. Provide for 1009, sorting of all product
-until the problem can be resolved.

d. Aim for a level that will set an eco-
nomic balance between relative costs,
including rework or scrap. Maintain
control at that level.

e. Make fundamental changes in the
process, such as: buy a new machine,
design different tools or provide different

experiments which are conducted. This will methods.
Max. —:\___:___—_.:l.:-__;c—\——__;
—_— -
Mino W Min.
A — —
T Y T _
Fig. 113. Process offcenter.
Max. Max.
= B ax.
NN A //\\ A
\\/’ N N
__________________________________ .
Min. Min.

Fig. 114. Process wider than specified limits.
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Non-normal distributions

The foregoing comparisons apply to any dis-
tribution, whether normal or not. However,
if the distribution is not normal, the center of
the distribution may need to be located closer
to or farther from one of the specification
limits in order to allow for the non-normal
shape.

C-3 SPECIFICATION CONFLICTS
AND WHAT CAN BEDONE TO
AVOID THEM

If X and R charts show that the natural dis-
tribution of the process is too wide to fit be-
tween the specified limits (Condition 4), or if
the process cannot be centered in the proper
place (Condition 3), there is evidently a conflict
between process and specification. As indi-
cated above, there are three ways in which this
conflict may be resolved:

(1) Change the process.
(2) Change the specification.

(3) Sort and repair the product which falls
out of limits.

The first thing to attempt is to change the
process. If making the necessary changes would
be very expensive, or if no better way of making
the product is known, the engineers should
look carefully at the specification. The usual
procedure is to ask to have the tolerances re-
viewed to see what effect a different set of
tolerances would have on the assembly, func-
tioning or interchangeability of the product.

In order to reduce manufacturing costs to a
minimum, tolerances should be as wide as the
design can permit rather than as narrow as the
shop is able to meet.

Sorting and repair is a very expensive way of
handling specification trouble, and should only
be considered as a last resort.

The following will be helpful to engineers in
avoiding unnecessary costs resulting from
specification conflicts:

(1) The natural spread of a process is usu-
ally taken to be =3 ¢’. For economical
manufacture, the specified tolerances
should accept the full natural process
spread.
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(2) In addition, it is seldom possible to keep
a process running at exactly the same level
month after month. Some allowance is
needed to permit a slight shifting of the
center. For most processes, it is con-
sidered desirable to allow the center to
shift about +1 ¢’. In that case, the speci-
fied tolerances should be about %4 ¢’.

In some Western Electric processes
where good control around the nominal is
essential, the specified tolerance is =3'/s
o’. This permits the process average to

shift up or down about !/; o’.

(8) If the natural spread of the process is
more than about 2/; of the specified tol-
erances, it is probably great enough to
cause occasional difficulty in meeting the
requirements. If the spread is consider-
ably less than the specified tolerances
(say !/ or !/3), it may be possible to
reduce costs by using a more economical
process.

In all cases where processes are to be com-
pared with specifications, the processes must
first be in control as shown by a process capa-
bility study. See paragraph A-3.10 on page 56.
If an out-of-control condition is indicated by
the study, identify the assignable causes and
remove them (or allow for them) before com-
paring the process with the specification.

C-4 STATISTICAL ADDITION
OF TOLERANCES

Whenever two or more parts are assembled
together, the act of assembly creates new di-
mensions and new distributions that did not
exist before the assembly was made. The en-
gineer is interested in predicting the character-
istics of the assembly, and in assigning suitable
tolerances to the components so as to permit
the most economical and trouble-free manu-
facture for both the components and the
assembly.

Every assembly problem of this nature in-
volves the addition of distributions. The
distributions which exist on one component
are added to the distributions which exist on
the second component and so on until the as-
sembly is completed.



Inasmuch as the addition of distributionsis a
statistical procedure, the engineer should be
familiar with certain basic statistical laws in
order to arrive at economical solutions.

C-4.1 Theory of the addition of
distributions

The most important statistical laws which
govern the addition of distributions are the
following:

(1) Law of the addition of averages. If parts
are assembled in such a way that one di-
mension is added to another, the average
dimension of the assembly will be equal to
the sum of the average dimensions of the
parts.

Let X, = the average dimension
of Part A

X; = the average dimension
of Part B

X. = the average dimension
of Part C, etc.
Average dimension of assembly = X,

+ X + X, ete.
See Figure 115.
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Fig. 115. Addition of averages.
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Fig. 116. Subtraction of averages.

(2) Law of differences. If the parts are as-
sembled in such a way that one dimension
is subtracted from another, the average
dimension of the assembly will be the dif-
ference between the average dimensions of
the parts.

Let X, = the average dimension
of Part D

X, = the average dimension
of Part E

Average dimension of assembly =
X, — Xz or Xz — X, as the case
may be.

See Figure 116.

(3) Law of sums and differences. If the parts
are assembled in such a way that certain
dimensions are added to each other while
certain dimensions are subtracted, the
average dimension of the assembly will be
the algebraic sum of the average dimen-
sions of the parts.

Average dimension of assembly = X, +

X5+ Xo — Xp + X, ete.

(4) Law of the addition of standard deviations
or vartances. If the components are as-
sembled at random, the standard deviation
of the assembly will not be the simple sum
of the standard deviations of the parts.
It will be the value obtained by squaring
each of the component standard devia-
tions, totaling the squares, and then taking
the square root of the total.*

Let o, = the standard deviation
of Part A

oy = the standard deviation
of Part B

Standard deviation of the assembly
V(02 + (03)%

The fourth law should be carefully studied by
the engineer, because the statistical addition
gives a different result from the one which he
would be likely to obtain intuitively.

In particular, the engineer should note that

* In special cases, where the dimensions do not combine
linearly, or are not independent, more complicated cal-
culations may be necessary to obtain the final dimen-
sion and its standard deviation.
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the squares of the standard deviations are
always added regardless of whether the average
dimension is obtained by sums or differences.
Never attempt to subtract one standard devia-
tion from another as may be done in the case of
averages.

The fourth law can also be expressed in terms
of “variance” instead of standard deviation.
The variance is the square of the standard de-
viation (¢?). If (¢,)? is the variance of Part
A and (o5)? is the variance of Part B, the
variance of the assembly will be (a,)? + (03)2

C-4.2 Assembly tolerances

The law of the addition of standard devia-
tions has important implications in assembly
work, since the “square root of the sum of the
squares” will always be less than the value that
would be obtained if the standard deviations
were merely totaled. For example:

a4 = .0003
oz = .0004
o4 + o5 = .0007
But:
Ve F (o0 = V/(0003)" + (0004 =
/.00000025 = .0005

The law of statistical addition gives .0005
while simple arithmetic addition gives .0007.
This means that random assemblies can be held
to narrower spreads than would be indicated by
totaling the spreads of the parts. Designers take
advantage of this in the condition known as
“overlapping tolerances.”

200 % 005:‘; Wﬁr
D\

600 = .003
1
\ 1.800 =+ .008

The parts may be =:.005, +.003 and =£.005,
but the assembly is only allowed to spread =.008.

1.000 = .005

Fig. 117. Overlapping tolerances.
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C-4.3 Overlapping tolerances

When we add up the tolerances on all com-
ponent parts on a drawing and find that their
total is greater than the tolerance allowed for
the assembly, we have a condition known as
“overlapping tolerances.” See Figure 117.

This may or may not be a cause for concern
since, by the law of the addition of standard
deviations as given above, we know that the
spread of random assemblies will be less than
the total spread of all the parts.

Whether we will have trouble in assembly
when using these “overlapping tolerances” de-
pends on four factors:

(1) Whether the actual standard deviations
of the components are really the same as
implied in the tolerances on the drawing.

(2) Whether the actual averages of the com-
ponents are the same as the nominals
shown on the drawing.

(3) Whether the components are assembled
at random.

(4) Whether the “square root of the sum of
the squares” of the actual standard devia-
tions, when calculated, is compatible with
the tolerance specified for the assembly.

The information for points 1 and 2 must be
obtained from process capability studies or
shop control charts. Point 3 can be taken care
of in setting up the assembly process. Point 4
can be calculated by the engineer from the
information provided in 1 and 2.

C-4.4 Pitfalls in the use of overlapping
tolerances

The law of the addition of standard deviations
as given on page 123 applies in any case where
the standard deviations of the various compo-
nentsare known. Engineers sometimes wish to
take advantage of this law without having prior
knowledge of what the standard deviations are
likely to be. In such cases the engineer may
reason as follows:

a. Assume that the components will all be
normally distributed with a spread equal
to the tolerance which is put on the draw-
ing.



et 250 = .004 It

325 = 001

.750 = .005

R S

1.325 =% .007

Sum of individual component tolerances = =+.010

Assembly tolerance =‘/s=(.004)- + (.005)? + (.001)? = =.0065

Fig. 118. Wrong use of overlapping tolerances.

b. It would then be possible to substitute
“specified tolerance” in place of “‘standard
deviation” in the equation on page 123.

Figure 118 shows an example of assembly
limits calculated in this manner.

The calculations were as follows:

Average of assembly should equal Nominal,
+ Nominal; + Nominal,

250 + .750 + .325 = 1.325.
Tolerance of assembly should equal
4/ (Tolerance,)?+ (Tolerancez)?+ (Tolerancec)?

+/(:004) + (.005) + (.001)% =
/000042 = .0065

On the basis of the above calculation the en-
gineer fixed the assembly tolerance at =+.007.
This is a dangerous way to use overlapping
tolerances.

The danger in making calculations of this
type is that the engineer has no way of checking
his assumptions. If the components are not
normally distributed around nominal, or if
their spread is not equal to the tolerance, the
shop may get into serious trouble when
tolerances are calculated in this manner.

In particular, the shop will be likely to get into
trouble if the spread of the process at any one time
18 considerably narrower than the tolerance. This
is very likely to be the case in practice. To
avoid such trouble the engineer should adopt
the following rules.

(1) Always calculate the assembly tolerance
from process capability information. If no
information is available, use your best
estimate of the probable capability and
make ample allowance for the fact that
your estimate may be inaccurate.

(2) In using specifications which include
overlapping tolerances, always provide the
shop with control charts which will show
the actual distribution of the components.
The assemblies will be the statistical sum
of the distributions on the control charts,
and this may be very different from the
assumed distributions on the drawing.

C-4.5 Successful use of overlapping
tolerances
Figure 119 shows an example of the success-

ful use of overlapping tolerances, properly im-
plemented with control charts.

Magnet Pole piece
assembly
.035 Max
024 Mm
+ 0025—>
.324 Max.—m
.315 Min.

Fig. 119. Correct use of overlapping tolerances.
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The “E” requirement on the gap is only
.035 — .024. The possible maximum clear-
ance using extreme parts would be .324 —
2875 = .0365. The possible minimum
clearance using extreme parts would be .315 —
2025 = .0225. Yet the shop consistently
meets the tight “E” requirement.

Procedure

¢ The .290” dimension is controlled by
an X and R chart.

e The .324 maximum, .315 minimum
dimension is controlled by an X and R
chart.

e The .035 maximum E, .024 minimum

"~ E dimension is verified by an X and R
chart.

The results have been economical manufac-
ture, minimum inspection, virtually no rejec-
tions and good process control.

C-5 CLEARANCES AND FITS

“Statistical addition of tolerances” can be
applied to advantage in dealing with clearances
and fits. These are “mating” conditions ex-
pected of two or more parts having the same or
different tolerances. The specified mating con-
ditions vary from interference fits to running
fits according to the functional design of the
mating parts. See Figures 120 and 121.

Taking Figure 121 as an example, what will
be the average clearance between shaft and
bearing, and how much will it vary?

Let X5 = the controlled average of the in-
side diameter of the bearing,
and let o = itsstandard devia-
tion.

Let X5 = the controlled average of the out-
side diameter of the shaft, and
let o5 = its standard deviation.

Tolerance of fit—.005T to .015T

X A 005
+.000 +.005 |
005 1595 _ 000
Y Yy € 2222272y

Fig. 120. Tight clearance.

A
003 +.005
2510 Zo00 2500 Z000. é

l 47

! 7700

Tolerance of fit—.005L to .013L

Fig. 121.
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A process capability study has yielded the
following values:

X, =2.5115 X, =2.502

0y = .0006 Og = .0007

The evidence indicates that the distributions
are approximately normal.

Average assembly clearance
= X B~ X ]

2.5115 — 2.502

= .0095

Standard deviation of the assembly clearance

(0c) = \/("’»)2 + (05)?

= V/(.0006)* + (.0007)*

= 4/.00000085
= .0009

Minimum clearance =
= .0095 — .0027 = .0068.

Maximum clearance = .0095 4+ 3 o
= .0095 4+ .0027 = .0122,

0095 — 3 o¢

To find how much of the product can be ex-
pected to meet the specification (assuming nor-

mal distributions), proceed as follows:

_ -0095 — Spec. Max. _

Oc

t

.0095 — .013
.0009

Look up —3.9 in Table I on page 133, under
‘“Percentage Outside of Max.” Only one-
hundredth of 19, of the product is likely to fail
to meet the maximum tolerance. Similar cal-
culations are made for the minimum tolerance.
Follow the directions on page 132.

= -39

Comment

In order to take advantage of statistical solu-
tions for such problems, two restrictions must
be met:

(1) There must be a known distribution for
each component. This ordinarily means
that each component must come from a
controlled process, or at least from a
known process which is covered by X and
R charts.

(2) The mating components must be as-
sembled at random rather than by selec-
tion.

As in the case of overlapping tolerances, the
engineer should not use the nominals or toler-
ances specified on the drawing. It is necessary
to use the actual X’s and standard deviations
from controlled processes, as shown by a shop
control chart or a process capability study.
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PART D
Distributions

D-1 CHARACTERISTICS
OF FREQUENCY
DISTRIBUTIONS

Frequency distributions have three charac-
teristics that provide useful information:

(1) Center, or average.
(2) Spread, or dispersion.
(3) Shape.

Each of these characteristics can be described
by means of standard statistical measures.

D-1.1 Center or average

When observations are plotted in the form
of a frequency distribution they usually tend
to cluster near some central value, with fewer
readings falling on either side. The point near
which the measurements tend to cluster is
called the ‘‘central tendency.” Among the
common measures of central tendency are the
following:

(1) Arithmetic mean (commonly spoken of as
‘“‘average”).

(2) Median (or middlemost value).

(3) Mode (the value having the highest fre-

quency).
The arithmetic mean or ‘“‘average’” is almost
universally used in quality control. In a few
cases the median is employed as a convenient
substitute.
Arithmetic mean

This is denoted by the symbol X. It is cal-
culated as follows:
Add the observed values and divide the
total by the number of observations.

Let X = an individual observation

X=X1+X2+X3+X4 ..... X
n

Median or middlemost value
This is denoted by the symbol MED. It is
calculated as follows:

Arrange the measurements in ascending
order of magnitude. Count off equal num-
bers of méasurements from either end of

the series until (a) a single value or (b) a
pair of values is left at the center. If a
single value is left, this value is the
median. If two values are left, the median
is the average of the two. For example:

a. 72 79 80 81 93
MED = 80.

b. 46 |51 54 60

MED = the average of 51 and 54, or
52.5.

Mode

The mode is often used in referring to a
skewed distribution. It represents the maxi-
mum point on the distribution curve. In a
skewed distribution the median and the mode
do not occur at the same point as the arithmetic
mean.

D-1.2 Spread or dispersion

The ““spread” of a distribution is the amount
of variation or dispersion of the individual
values around their average. Among the com-
mon measures of dispersion are the following:

(1) Variance (the mean square deviation of
the values from their average).

(2) Standard deviation (the square root of
the variance, or ‘“root mean square” devia-
tion of the values from their average).

(3) Range (the difference between the high-
est and lowest value in a set of observa-
tions).

All three of these measures are employed in
quality control.
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Variance
This is denoted by the symbol ¢? (sigma
squared). It is calculated as follows:

Obtain the average of the given values.
Calculate the difference between each value
and the average. Square these differences,
total them, and divide by the number of
given values.

Let X = an individual value
X = the arithmetic mean (or aver-
age) of the individual values
o 2lX = 2]
n
Example:

Given the set of numbers:
10 14 6 2

X=¥=8

Deviations from X are +2, +6, —2,
—6. Squares of deviations are 4, 36, 4,
36.

Mean square deviation (or variance)

_4+36+4+36 _
1

Standard deviation

The standard deviation is denoted by the
symbol o (sigma) or sometimes s. It is calcu-
ated as follows: -

20

Obtain the variance as directed above. Ex-
tract the square root. This is the standard
deviation.

d=¢mm—xm
n
Example:
Given the set of numbers:

10 14 6 2

X =8
_ JE + (6 + (=2 + (—6"
a..J t
= /20 = 4.472

In calculating the standard deviation of a
large number of measurements, it is convenient
to group the data into cells as shown on-page
139.
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The standard deviation can then be calculated
by a short-cut method as shown in Figure 122.

Proceed as follows:

(1) Record the observed frequency opposite
the midpoint of each cell.

(2) Set up some convenient arbitrary scale
which can be used for preliminary calcula-
tions.

(3) Fill in the columns “fz” and “fz?’ as
indicated.

Data from Figure 130 on page 139.
n = 100
Ob-
Mid- served Arbi-
point Fre- trary
of quency, Scale,
Cell f z fz fz?
12.75 1 +10 +10 100
12.565 0 + 9 0 0
12.35 3 + 8 +24 192
12.15 1 + 7 + 7 49
11.95 3 + 6 +18 108
11.75 2 + 5 +10 50
11.55 4 + 4 +16 64
11.35 10 + 3 +30 90
11.15 10 + 2 +20 40
10.95 8 + 1 + 8 8
10.75 11 0 0 0
10.55 7 -1 -7 7
10.35 4 -2 -8 16
10.15 15 -3 —45 135
9.95 6 - 4 —24 96
9.75 6 -5 -30 150
9.55 2 -6 -12 72
9.35 3 -7 -21 147
9.15 0 -8 0 0
8.95 0 -9 0 0
8.75 0 -10 0 0
8.55 1 -11 —-11 121
8.35 3 -12 —-36 432
100 ~51 1877
P -.51 18.77
Divided by n El E2
A = midpoint of zero cell = 10.75
m = cell interval (difference between midpoints)
= .20
X =44+ m(ELl =1075+ [20x (—=.51)] =
10.75 — .10 = 10.65
¢ =m+VE2 — (E1)? = .218.77 — 26 =
24/18.51 = .86

Fig. 122. Short method of calculating the standard
deviation from a grouped frequency distribution.



(4) Divide both the ‘“fz” and the ‘“fz?”’
columns by n (the total number of ob-
servations). Call these respectively El
and E2.

(5) Record the value of A (the midpoint of
the cell called ‘“0” on the arbitrary scale)
and m (the difference from midpoint to
midpoint of the cells).

(6) Calculate X and o for the grouped fre-
quency distribution by using the equations
given at the bottom of Figure 122.

Other methods of calculating the standard de-
viation can be found in the standard statistical
texts.

Standard deviation of a universe (¢”)

When we wish to refer to the standard devia-
tion of an underlying universe or parent popu-
lation, we use the symbol ¢’. In an industrial
process the true value of ¢’ is usually unknown.
However, it is possible to estimate ¢’ by using
a sample (or series of samples) as follows:

o' = (sigma of a sample of given size) x —cl
2
where ¢ is a factor which varies with sample
size as shown in Figure 123. o’ can also be
estimated from the centerline on an R chart as
follows:
If the R chart shows control,

o R

d;
where d; is a factor which varies with sample
size as shown in Figure 123.

(2

Sample

Size d, C2
2 1.128 .5642
3 1.693 .7236
4 2.059 .7979
5 2.326 .8407
6 2.534 .8686
7 2.704 .8882
8 2.847 .9027
9 2.970 .9139

10 3.078 .9227

Fig. 123. Table of factors for estimating o’.

In cases where the R chart is in control but
the X chart is out of control, the estimate of
o’ which is obtained from the R chart will be a

better estimate of the standard deviation of the
underlying universe than the value obtained
by calculating the “root mean square” devia-
tion. For example:

The original data of Figure 122 were
shown on page 14. R for samples of 5 was
found tobe 1.59. The d, factor for samples
of 5 is 2.326.

This is a truer estimate of the standard
deviation of the underlying process than
the value of .86 which was calculated on
page 130. This is because the distribution
shifted its center during the period when
the measurements were obtained, and the
shift in center has inflated the estimate
arrived at on page 130.

Range

The range is denoted by the symbol B. Itis
calculated as follows:

" Let M = the largest value in a set
of measurements
m the smallest value

R =M-m

The range is used in quality control to detect
certain types of assignable causes. Also, the
average range of a series of samples which show
control may be used as above to estimate o’

D-1.3 Shape

The third important characteristic of a dis-
tribution is its shape, or profile. Most dis-
tributions of actual observed data are irregular
in shape, but sometimes distributions are found
to be fairly uniform and symmetrical about the
mean. Statistical techniques make use of a
number of theoretical distribution shapes,
which may or may not be approximated by the
distributions observed in practice. Among the
important theoretical shapes are the following:

(1) Normal distribution.

(2) Distributions which are symmetrical but
not normal.

(3) Distributions showing various degrees
and types of skewness.

(4) Distributions showing more than one
mode or “peak.”
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Fig. 124. Normal distribution.

D-1.4 Normal distribution

When statisticians speak of a “normal’”’ dis-
tribution they mean one which is specifically
defined by a certain mathematical equation.
This distribution is perfectly symmetrical
about its mean and has the familiar “bell
shape’” which is illustrated in Figure 124.

The equation for the Normal Distribution
can be written in various ways, one of which is
the following (Reference No. 6):

_x-X:
1 e 25t
x \/2—7l’

where p(X) is the ordinate to the curve for a

given value of X (the measured variable).
This distribution has a number of important

characteristics, among which are the following:

p(X) =

a. The areas on either side of the mean are
equal.

b. About 68.26%, of the total area is included
within a distance of %=1 ¢ from the mean.

c. About 95.45%, of the total area is included
within a distance of =2 ¢ from the mean.

d. About 99.73% (or virtually all) of the
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area is included within a distance of £3 ¢
from the mean.

The table on page 133 gives a more complete
listing of the percentages or areas associated
with the Normal Curve.

For estimating the percentage outside of
limits when a distribution is normal, calculate
“t” as shown in the table for either the maxi-
mum or minimum limit. The percentage is
given opposite the value of “¢” in the appro-
priate column, depending on whether the value
of ““¢”” is found to be negative or positive.

The normal distribution is important in
quality control for two reasons:

(1) Many distributions of quality charac-
teristics of a product are reasonably similar
to the normal distribution. This makes it
possible to use the normal distribution for
estimating percentages of product that are
likely to fall within certain limits.

(2) Even when the distribution of product
is quite far from normal, many distribu-
tions of statistical quantities, such as
averages, tend to distribute themselves in
accordance with the Normal Curve. For



TABLE I
NORMAL DISTRIBUTION

Percentage Outside of Max.
{ = X — Max.
a,l
t If ¢ is negative If ¢ is positive
0.0 50.0% 50.0%
0.1 46.0% 54.0%
0.2 42.19% 57.9%
0.3 38.29%, 61.8%
0.4 34.5% 65.5%
0.5 30.8% 69.2%
0.6 27.49, 72.6%
0.7 24.29% 75.8%
0.8 21.29, 78.8%
0.9 18.49% 81.6%
1.0 15.9% 84.19,
1.1 13.6%, 86.49,
1.2 11.5%, 88.5%
1.3 9.7% 90.3%
1.4 8.1% 91.9%
1.5 6.7% 93.3%
1.6 5.5% 94.59%
1.7 4.5% 95.5%,
1.8 3.6% 96.49%,
1.9 2.9% 97.1%
2.0 2.3% 97.7%
2.1 1.8% 98.29%,
2.2 1.4% 98.6%
2.3 1.19 98.99%,
2.4 0.8% 99.29,
2.5 0.6% 99.49,
2.6 0.5% 99.59%
2.7 0.49, 99.6%
2.8 0.3% 99.7%
2.9 0.2% 99.8%
3.0 0.1% 99.9%,
3.1 0.1% 99.9%
3.2 0.1% 99.99%,
3.3 0.05% 99.959%,
3.4 0.03% 99.97%,
3.5 0.02% 99.98%,
3.6 0.02% 99.98%,
3.7 0.01% 99.99%,
3.8 0.019% 99.999%,
3.9 0.01% 99.999%,
4.0 0.00% 100.0 %

Percentage Qutside of Min.
Min. —
t s ————
o
t If ¢ is negative If ¢ is positive
0.0 50.0% 50.0%
0.1 46.0% 54.0%
0.2 42.19% 57.9%
0.3 38.29%, 61.8%
0.4 34.5%, 65.5%
9.5 30.8% 69.29%
0.6 27.49, 72.6%
0.7 24.29, 75.8%
0.8 21.29, 78.8%
0.9 18.49, 81.6%
1.0 15.9% 84.19,
1.1 13.6% 86.4%,
1.2 11.59%, 88.5%
1.3 9.7% 90.3%
1.4 8.19%, 91.9%
1.5 6.7% 93.3%
1.6 5.5% 94.5%,
1.7 4.5% 95.5%
1.8 3.6% 96.49%,
1.9 2.9% 97.19,
2.0 2.39% 97.7%
2.1 1.8% 98.2%
2.2 1.49, 98.6%
2.3 1.1% 98.9%
2.4 0.89% 99.2%
2.5 0.6% 99.49%,
2.6 0.5% 99.5%
2.7 0.4% 99.6%
2.8 0.3% 99.7%
2.9 0.29, 99.89%,
3.0 0.19% 99.9%
3.1 0.19, 99.9%
3.2 0.1% 99.9%
3.3 0.05% 99.95%
3.4 0.03% 99.97%
3.5 0.02% 99.98%,
3.6 0.02% 99.98%
3.7 0.01% 99.99%
3.8 0.01% 99.99%,
3.9 0.01% 99.99%,
4.0 0.00% 100.0 %

this reason the normal distribution has
important uses in statistical theory, in-
cluding some of the theory which underlies
control charts.

Tests for normality

The engineer may occasionally wish to test a
set of data for normality—that is, to test
whether it might reasonably have come from a

normal population. Some of the difficulties of
doing this are discussed on pages 78-79. Satis-
factory tests for normality require fairly large
amounts of data.

Three common methods of testing for
normality are the following:

(1) Chi-square test. See Reference No. 13.

The data
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(2) Normal probability paper.



are plotted cumulatively on paper having
special graduations. If the distribution
is perfectly normal, the graph will be a
straight line. See Reference No. 13.

(3) Calculation of skewness (lack of sym-
metry) and kurtosis (degree of flatness).
These measures of non-normality may be
tested for significance like any other
statistical measures. See Reference No.
13.

The engineer should remember that for many
quality control purposes it is not necessary to
know whether a distribution is normal.

D-1.5 Distributions which are
symmetrical but not normal
The engineer should not assume that all

symmetrical distributions are normal. Ex-
amples of non-normal symmetrical distributions

are shown in Figure 125.

The engineer will note that the areas in dif-
ferent portions of these curves are very different
from the “normal” areas. Distribution A,
which is flatter than the normal curve, is called
a “platykurtic”’ distribution. Distribution B,
which is more peaked than the normal curve,
is called a “leptokurtic’” distribution. The
amount of flatness (or kurtosis) can be meas-
ured, if desired, by a measure known as “g,.”
See Reference No. 19.

It is rarely necessary to measure flatness in
quality control applications, but the engineer
should be aware that such a characteristic
exists.

D-1.6 Skewed distributions

Distributions are said to have positive or
negative skewness depending on the direction
of the longer tail. A distribution is skewed

Normal

Platykurtic

Leptokurtic

Fig. 125. Distributions which are symmetrical but not normal.

POSITIVE SKEW
k = +1

NEGATIVE SKEW
k= -1

Min. Max.

Min. Max.

Fig. 126. Opposite types of skewness.
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positively if the long tail is on the maximum
side and negatively if the long tail is on the
minimum side. These two types of skewness
are illustrated in Figure 126.

The degree of skewness is measured by a fac-
tor called V/B; or “k.” See Reference No. 19.

One of the common theoretical distributions
involving skewness is known as the “Second

(-3 (-5

using the same notation that was employed on
page 132.

Approximation to the Normal Curve.” Its The distributions shown in Figure 126 are
equation is “Second Approximation” curves with k = +1
TABLE II
SECOND APPROXIMATION WITH k = +1
Percentage Qutside of Max. Percentage Outside of Min.

— Max. Min. —
t= ; = ————
o o
t If ¢ is negative If ¢ is positive t If t is negative  If ¢ is positive
0.0 43.3% 43.3% 0.0 56.7% 56.7%
0.1 39.4% 47.49, 0.1 52.6% 60.6%
0.2 35.8% 51.6% 0.2 48.49, 64.29,
0.3 32.5% 55.0% 0.3 44.69, 67.5%
0.4 29.3% - 60.4% 0.4 39.6% 70.7%
0.5 26.4% 64.7%, 0.5 35.3% 73.6%
0.6 23.8% 69.0% 0.6 31.0% 76.2%
0.7 21.5% 73.19% 0.7 26.9% 78.5%
0.8 19.49% 77.0% 0.8 23.0% 80.6%
0.9 17.49, 80.7% 0.9 19.3% 82.6%
1.0 15.8% 84.19, 1.0 15.99%, 84.29%,
1.1 14.39%, 87.29%, 1.1 12.89%, 85.7%
1.2 12.9% 89.99%, 1.2 10.19, 87.19%
1.3 11.6% 92.3% 1.3 7.7% 88.49,
1.4 10.4% 95.49%, 1.4 5.6% 89.6%
1.5 9.3% 96.09%, 1.5 4.0% 90.7%
1.6 8.3% 97.19%, 1.6 2.9, 91.79,
1.7 7.4% 98.5%, 1.7 1.59% 92.6%
1.8 6.5% 99.3% 1.8 0.7% 93.5%
1.9 5.7% 99.99%, 1.9 0.5% 94.3%,
2.0 4.9% 100.0 9 2.0 0.0% 95.1%
2.1 4.29, - — 2.1 _ 95.8%
2.2 3.6% —_ 2.2 — 96.49%,
2.3 3.1% — 2.3 — 96.9%
2.4 2.6% — 2.4 — 97.49%,
2.5 2.1% — 2.5 — 97.9%
2.6 1.7% — 2.6 — 98.3%
2.7 1.4% — 2.7 — 98.6%
2.8 1.19% — 2.8 - 98.9%
2.9 0.9% —_— 2.9 — 99.19%
3.0 0.7% — 3.0 — 99.3%
3.1 0.5% — 3.1 — 99.5%
3.2 0.4% —_ 3.2 — 99.6%
3.3 0.3% —_ 3.3 — 99.7%
3.4 0.29% — 3.4 — 99.89%,
3.5 0.2% — 3.5 — 99.8%
3.6 0.1% — 3.6 — 99.9%
3.7 0.07% — 3.7 — 99.9%
3.8 0.03% —_ 3.8 — 99.9%
3.9 0.01% — 3.9 — 99.99%
4.0 0.00% —_ 4.0 — 99.99%,
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and k = —1respectively. The tables on pages
135 and 136 show the percentages or areas asso-
ciated with these two curves. The engineer
should compare the percentages with those of
the Normal Distribution on page 133.

As in the case of a normal distribution, these
tables can be used for estimating the percentage
outside of limits. Follow the rules on page 132
in calculating the value of “#” and read the

percentage in the appropriate column.
Some distributions having higher degrees of
skewness are shown on pages 57, 58 and 163.

D-1.7 Distributions having more than one
mode or peak
Common distributions of this type are shown
on pages 155, 158, 162, 166, 173, 174, 176 and
179. Bimodal or multi-modal distributions

Percentage Outside of Max.
X — Max.
R
t If ¢ is negative If ¢ is positive
0.0 56.7% 56.7%
0.1 52.6% 60.6%
0.2 48.49, 64.2%
0.3 44.6% 67.5%
0.4 39.6% 70.7%
0.5 35.3% 73.6%
0.6 31.0% 76.2%
0.7 26.9% 78.5%
0.8 23.0% 80.6%
0.9 19.3% 82.6%
1.0 15.99%, 84.2%
1.1 12.89%, 85.7%
1.2 10.19% 87.1%
1.3 7.7% 88.4%
1.4 5.6%, 89.6%
1.5 4.0% 90.7%
1.6 2.9% 91.7%
1.7 1.5% 92.6%
1.8 0.7% 93.5%
1.9 0.5% 94.39%,
2.0 0.0% 95.1%,
2.1 — 95.8%
2.2 — 96.4%
2.3 —- 96.9%
2.4 - 97.49%,
2.5 - 97.9%
2.6 — 98.3%
2.7 — 98.6%
2.8 — 98.9%
2.9 — 99.1%
3.0 —_ 99.3%
3.1 — 99.5%
3.2 — 99.6%
3.3 — 99.7%,
3.4 — 99.8%
3.5 — 99.9%
3.6 S 99.9%
3.7 — 99.9%
3.8 —_ 99.9%
3.9 — 99.99%
4.0 - 99.99%,

TABLE III
SECOND APPROXIMATION WITH k = -1

Percentage Outside of Min.

¢ = Min. — X
’I
t If ¢ is negative  If ¢ is positive
0.0 43.3% 43.3%
0.1 39.49% 47.49,
0.2 35.8% 51.6%
0.3 32.5% 55.0%
0.4 29.3% 60.4%
0.5 26.49, 64.7%
0.6 23.8% 69.09%,
0.7 21.5% 73.1%
0.8 19.49% 77.0%
0.9 17.4% 80.7%
1.0 15.8% 84.19,
1.1 14.3% 87.29%,
1.2 12.9% 89.9%
1.3 11.6% 92.3%
1.4 10.49, 95.49%,
1.5 9.3% 96.0%
1.6 8.3% 97.1%
1.7 7.4% 98.5%,
1.8 6.5% 99.3%
1.9 5.7% 99.9%
2.0 4.9% 100.09%,
2.1 4.29 —
2.2 3.6% —
2.3 3.1% —
2.4 2.6% —
2.5 2.1% —
2.6 1.7% —
2.7 1.49, —
2.8 1.19, —
2.9 0.9% —
3.0 0.7% —
3.1 0.5% —
3.2 0.4% —
3.3 0.3% —
3.4 0.2% —
3.5 0.2% —
3.6 0.19% —
3.7 0.07% —
3.8 0.03% —
3.9 0.01% —
4.0 0.00% —
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usually result from the presence of more than
one system of causes.

D-2 DISTRIBUTIONS DERIVED
FROM SAMPLES

D-2.1 Sampling distributions

In general, the most convenient and useful
way to collect data is in small groups called
samples. For example we might measure 5
pieces of product occasionally and record them
as in Figure 127. The x’s represent the in-
dividual pieces of product and the large dot is
their average.

.507 4
.506 4
.505 4

.503 X X

.502 | ‘ X X
5014 g xx X
.500

494 x xf é X
498 X

497 | X
496y

.495
494 | X

@< x x

*

Fig. 127. Samples of 5 and their averages.

We could group the individual measurements
together, if we wished, to form a frequency dis-
tribution.

In addition to the individuals, however, we
now have a number of averages. The averages
do not spread as widely as the individual
measurements.

If we had enough averages and grouped
them together, we would find that they tended
to form a frequency distribution of their own,
which would be considerably narrower than the
distribution of individuals. This can be seen in
Figure 128.

Parent distribution
of individuals.

Sampling distribution

495 of averages.

494 J
Fig. 128. Frequency distribution of data similar
to Figure 127. A smooth curve has been drawn around

the x’s and also around the dots.

The distribution of sample averages is called
a sampling distribution since, in order to obtain
it, we must have a series of samples. In the
same way, a series of ranges calculated from
samples wﬂ? form a sampling distribution of
ranges. A series of percentages calculated
from samples will form a sampling distribution
of percentages. A series of counts obtained
from samples will form a sampling distribution
of counts.

Sampling distributions form the basis of most
control charts. The sampling distributions
mentioned above form the basis of X and R
charts, p charts and ¢ charts respectively.

D-2.2 Parent distribution

The underlying distribution of the process
from which the samples were taken is referred
to as the parent distribution in order to dis-
tinguish it from the distributions derived from
samples. Other names for the parent distribu-
tion are:

(1) Universe.
(2) Population.
(3) Distribution of individuals.
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D-2.3 Relationships between parent and
sampling distributions

Sampling distributions are related mathe-
matically to the parent distribution from which
the samples came. The parent distribution de-
termines (a) the standard deviation of the
sampling distribution, (b) its center or average,
and (c) to a certain extent its shape.

Some of the relationships between parent and
sampling distributions are rather involved, but
in the case of the sampling distribution of
averages the relationships are quite simple. For
this reason, the sampling distribution of
averages has been used in the illustrations
which follow.

The sampling distribution of averages has
the following relation to the parent:

(1) The center of the sampling distribution
of averages is the same as that of the
parent.

(2) The shape of the sampling distribution
of averages is governed to some extent by
the parent, but in general the sampling
distribution tends to follow the normal
curve quite closely, even when the parent
distribution is irregular, skewed, triangular
or square. For most practical purposes in
engineering work, it can be assumed that
the sampling distribution of averages is
approximately normal.

The engineer should note, however, that
this would not hold for parent distributious
having very extreme forms (such as U-
shapes or J-shapes), unless the samples are
very large. If the engineer should en-
counter such a case in practice, he may
expect to find the shape of the sampling
distribution significantly affected by the
parent.

(38) The standard deviation of the distribu-
tion of sample averages is related to the
standard deviation of the parent distribu-
tion as follows:

Standard deviation of averages =

standard deviation of parent

Vn
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where n = number of individuals in each
sample average.

If n = 5, the standard deviation of

1 .
averages = —— times the standard devia-
V5
. .. 1
t; f th . — -
ion of the parent. This is 236" or ap
proximately 45%,.

The control limits which appear on an X
chart are merely the 3 sigma limits for the
sampling distribution of averages.

Parent distribution

Control
limits

Sampling distribution of
averages of samples of 5

Id— Spread of parent —)-I

Fig. 129. Control limits for averages: Samples of 5.

In the drawing above, the area of the
sampling distribution is shown as approxi-
mately equal to that of the parent.

D-3 METHODS OF PLOTTING A
FREQUENCY DISTRIBUTION

Consider the measurements shown on page
14 (Gainin Db.). There are 100 measurements
in all and they range from 8.3 t0 12.8. Thisisa
spread of 4.5 db. When a frequency distribu-
tion is to be made from a large number of
observations scattered over many different
values on the scale of measurement, it is
usually convenient to group the data into inter-
vals or cells. Arrange the intervals in such a
way that there will be, if possible, from 10 to 30
cells. Inthe present example it would be con-
venient to divide the spread into cells of 0.2 db.
each. Tally the number of observations that
fall into each cell as shown in Figure 130.

The cell boundaries should be arranged in
such a way that there is only one cell in which



Gain tn Db.
12.7-12.8 x
12.5-12.6
12.3-12.4 XXX
12.1-12.2 X
11.9-12.0 XXX
11.7-11.8 XX
11.5-11.6 XXXX
11.3-11.4 XXXXXXXXXX
11.1-11.2 XXXXXXXXXX
10.9-11.0 XXXXXXXX
10.7-10.8 XXXXXXXXXXX
10.5-10.6 XXXXXXX
10.3-10.4 XXXX
10.1-10.2 XXXXXXXXXXXXXXX
9.9-10.0 XXXXXX
9.7-9.8 XXXXXX
9.5-9.6 XX
9.3-9.4 XXX
9.1-9.2
8.9-9.0
8.7-8.8
8.5-8.6 x
8.3-8.4 XXX
8.1-8.2

Fig. 130. Distribution of measurements in Figure 13
(page 14).

a given measurement may be placed. The
width of all cells should be the same, and the
total number of observations in all cells should
not be less than 25.

Histograms

A more formal way of plotting a frequency
distribution of observed values is to erect a
series of columns, each having a width equal to
the cell width. The height of the column repre-
sents the number of observations in each cell.
Such a representation of data is called a histo-
gram. It is used in the same way as any fre-
quency distribution. See Figure 131 on page
140.

Other methods of plotting a frequency dis-
tribution are given in Reference No. 2.

Fitting a curve to data

Engineers are frequently called on to “fit” a
theoretical curve to a set of observed data. The
most common example is that of comparing
actual data with a theoretical Normal Curve.
In order to draw a theoretical curve, the engi-

neer must first calculate the average and stand-
ard deviation of the observed data. Second, he
must know the ordinates or areas of the
theoretical curve he wishes to reproduce (usu-
ally obtainable from tables). Third, he must
be able to adjust the plotting scales for the ob-
served data and the theoretical curve so that
the areas will be equal.
A simple way to do this is as follows:

(1) Divide the data into a convenient num-
ber of cells and compute the average and
standard deviation as shown on page 130.
Call these X’ and ¢’ respectively.

(2) Translate the cell boundaries into =
values of sigma, or standard deviations
from the average. Thus, if B = the cell
bound}ry in terms of absolute units, take
B — ’

’

to obtain the cell boundary in
ag
terms of sigma.

(3) Look up each pair of cell boundaries in
the Table of Percentages or Areas for the
theoretical curve you have in mind. The
difference between the two percentages
(one for each boundary) gives the theoreti-
cal percentage that should fall in each cell.

(4) Mark off the cells at the bottom of a
piece of graph paper, indicating both ab-
solute units and = values of sigma. Plot
a point at the midpoint of each cell cor-
responding to the theoretical percentages.
Choose any convenient vertical scale.

Draw a smooth curve through the points
representing the theoretical distribution.

(5) Taking the observed data which are to
be used for comparison, convert the fre-
quencies for each cell into ‘““percentage of

Observed
Total *

Erect bars for each cell corresponding to

the observed percentages. Use the same

vertical scale as for the theoretical distribu-
tion.

total frequencies” by taking

(6) You now have a drawing with (a) a
smooth curve for the theoretical distribu-
tion and (b) a histogram for the observed
data. (See Figure 132 on page 141.) The
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Fig. 131. Histogram of the data in Figure 130.

distribution and the histogram have the
same average and standard deviation, and
the same general area.

For presentation it is generally desirable to
change the scale markings at the bottom of the
drawing to show convenient absolute values:
for example, the values corresponding to the
midpoints of the cells instead of their bounda-
ries, or any other convenient values.

A chi-square test can be used, if desired, to
obtain a numerical measure of the ‘“goodness of
fit.” See References No. 5 and 13.
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D-4 PRACTICAL USES
OF FREQUENCY
DISTRIBUTIONS

A frequency distribution of individual meas-
urements found in a sample is likely to exhibit
some of the characteristics of the parent dis-
tribution of product. Such observed distribu-
tions are useful for

(1) Comparing a collection of units with the
specification.
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Fig. 132. Theoretical Normal Curve compared with the actual data in Figure 131.

(2) Suggesting the shape of the parent dis-  used with caution, and the engineer should be-

tribution or universe. ware of attempting to get more information
out of them than a distribution can give. Do
not attempt to draw general conclusions from
distributions unless the data are in control.
This can be determined only by plotting the
Observed distributions should, however, be  data on control charts.

(3) Indicating certain discrepancies or pe-
culiarities in the data, such as coarseness,
gaps or screening.
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PART E
Correlation

E-1 GRAPHICAL METHODS OF
STUDYING CORRELATION

E-1.1 Scatter diagrams

The simplest way to study correlation is to
plot a scatter diagram. Obtain values for the
two variables, z and y, in pairs. That is,
measure z on & certain unit and y on the same
unit, identifying them as a pair. One point on
the scatter diagram represents one pair of z and
y values. Figures 133-135 show typical scatter
diagrams which indicate (a) positive correlation
(b) negative correlation and (¢) no correlation.

Correlation is said to be positive if the y
values increase as the z valuesincrease. Corre-
lation is said to be negative if the y values de-
crease as the z values increase. There is ab-
sence of correlation if the y values may be either
higher or lower as the = values increase.

If the scale markings on Figure 133 and Fig-
ure 134 are spaced alike, Figure 133 shows a
higher degree of correlation than Figure 134.
The more the points scatter, the less is the
correlation.

E-1.2 Trend arrangements

Since correlation can be defined as a trend in
y with increasing (or decreasing) values of z,
it is possible to use a control chart to test for
correlation. This technique is similar to the
scatter diagram except that it is possible to
apply a control chart test to see whether a trend
really exists. Proceed as follows:

(1) Arrange the pairs of measurements in
ascending order of z. Then, ignoring z,
divide the data into convenient subgroups
and plot a standard control chart for y.
This method can be followed with either
variables or attributes data.

(2) If the control chart shows an upward
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Fig. 133. Scatter diagram: Positive correlation.
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Fig. 135. Scatter diagram: No correlation.
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trend, there is positive correlation. If the
trend is downward, there is negative
correlation. If the chart stays in control,
there is no reason to conclude that the two
variables are correlated.

The control chart will also show whether
there is a change in the variability of y as z
increases. There may be a change in variabil-
ity when there is no change in the average.

In addition, the control chart may indicate
that some of the data are “wild’’ or out of con-
trol. Itisnecessary to make a special allowance
for such data in any estimates involving corre-
lation.

For maximum sensitivity use an X and R
chart, and collect the data in such a manner
that there will be 2, 3, 4 or 5 measurements of y
at each of several values of z. The subgroups
will then be rational subgroups with respect to
variations in z.

Instead of using subgroups it is possible to

X CHART X

Values of Y

Ascending values of X

Fig. 136. Trend arrangement: Positive correlation
between z and y.

>
L
F
D
>
[~~~

Ascending percentages of X

Fig. 137. Trend arrangement: No correlation

between z and y.
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plot the individual values of y, basing the con-
trol limits on the moving range. This type of
chart is not as sensitive as an X and R chart.

E-1.3 Determining the slope of the
correlation

In many cases it is possible to tell, without
calculation, the approximate “trend line’’ which
the data appear to follow. Frequently, how-
ever, the engineer wishes to draw & line which
will represent the relationship as exactly as
possible. If he attempts to do this by eye,
he may or may not be successful. The degree
of success depends largely on how far the data
scatter. See Figures 138 and 139.

X

Fig. 138. Few engineers would disagree on this.

Fig. 139. There may be a difference of opinion on this.

In doubtful cases the engineer should calcu-
late the “regression line of ¥ on z”’ (or of z on y)
as explained below.

E-2 REGRESSION LINES

A “‘regression line” or ““line of regression’ is a
line which represents the slope of correlated



data as accurately as possible. The “line of
best fit” is defined as the line which will make
the sum of the squares of the deviations from
the line a minimum. The method of calculat-
ing this line is known as the “method of least
squares.”

E-2.1 How to calculate the
line of regression

Let x
)

Draw up a table as shown in Figure 140.

the value of one variable.
the value of the other variable.

I

Variables z Y zy z?
Data
Totals
Symbols for
Totals Zz Zy | Zzy | Z2?

Fig. 140. Table for calculating a line of regression.

The equation for the straight line regression

is
y=mr+c¢

where

22y — ZDC)
- "

Zx? — ___(E:c)’
n

_ (Zn)(2zy) — (2y)(EeY
(Zz)? — n(Zx?)

n = the number of pairs of z, y values.

Substitute these values into the equation and
plot the sloping line. As a check on your calcu-
lations, make sure the line passes through the
point Z, 3.

Alternative method

If the engineer has already calculated the co-
efficient of correlation, ‘“‘r,”” as shown on page
146, this can be used to calculate the line of re-

gression. The method is shown in Figure 143.

E-2.2 Regressionof yonxandxony

The line of regression described in paragraph
E-2.1 is known as the “regression of y on z.”
This is used to predict or estimate y values
when given z. It assumes that z is the “inde-
pendent variable” whose values can be fixed or
which is accurately known. It assumes that y
is a, “dependent variable” whose values will
change with any change in the value of z.

It would also be possible to calculate a line
for the “‘regression of z on y.”” In that case we
would assume that y is the independent vari-
able while z is dependent, and we would predict
or estimate z values when given y. To calcu-
late this line, merely reverse  and y in the
equations given above.

The two lines of regression, y on z and z on ¥,
will not ordinarily be the same for any actual
set of data. The engineer must decide which
variable to consider as independent and deter-
mine the line accordingly.

If the engineer has no reason for considering
either variable to be independent, he may wish
to calculate both lines of regression and com-
pare them. For many practical purposes the
most useful line will be a line midway between
the line of regression of z on y and the line of
regression of ¥ on z.

E-2.3 How to put control limits around a
line of regression

To put control limits around a line of regres-
sion, proceed as follows:

(1) Calculate the coefficient of correlation,
“r,” as shown in Sub-section E-3.

(2) Calculate the “standard error of esti-
mate,” o, as follows:

O¢ = Oy \/].—'r2

(3) Use o, to establish regular 3 ¢ control
limits about the regression line as in Figure
141 on page 146.

It is also possible to plot the successive devi-
ations from the regression line, using control
limits based on the moving range or an X and
R chart. If the deviations are found to be out
of control, we cannot be confident that the re-
gression line really fits the data.
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Variable ¥

Variable X

Fig. 141. Control limits around the line of regression.

E-3 FORMAL CORRELATION
ANALYSIS

Whether or not he has calculated a line of re-
gression as in Sub-section E-2, the engineer
may wish to obtain a mathematical measure of
the degree of correlation between two variables.
The degree of correlation is measured by the
“correlation coefficient’’ (designated by the
symbol “r”’). It is calculated as follows:

2 206 - ) - 9]

Oz0y

r =

where z and y are the values of the two vari-
ables, respectively, and n is the number of
pairs. The terms in the denominator (o> and
ay) can be obtained by taking the “root mean
square’’ deviation of all the values of the vari-
able from their average as on page 130, or al-
ternatively by filling in the form shown in
Figure 142. Figure 143 shows how the correla-
tion coefficient can be used to calculate lines of
regression if the engineer has not previously
done so.

General meaning of ‘‘r”’

The value of “r” will be positive if there is
positive correlation between the variables and
negative if there is negative correlation. The
general meaning of ‘7’ is summarized in Figure
144,

Precautions

In using the coefficient of correlation it is
necessary to observe the following rules and
precautions:
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(1) While “r” is a measure of the linear rela-
tionship between z and y as it exists in a
given set of numbers, even a high value of r
does not imply that z and y are related as
cause and effect. It is possible to have a
high degree of mathematical relationship
with no causal relationship whatsoever.
For example: statistics show that teachers’
salaries and the national consumption of
liquor tend to go up and down at the same
time. This does not prove that when
teachers get higher salaries they spend the
additional money on liquor.

It is possible that two variables which
are not related to each other may both be
related to a third variable. This will cause
the first two variables to show a mathe-
matical relationship when there is no real
cause and effect.

The engineer should make sure that
there is an engineering reason to account
for the correlation before he attempts to
draw conclusions from a calculated value
of r.

(2) While unrelated sets of numbers should
have zero correlation on the average, in-
dividual samples may, as a result of
sampling fluctuation, have values of ‘“r”
above or below zero. Consequently, the
fact that “r’”” is other than zero does not
necessarily indicate that two sets of num-
bers are related.

Do not draw any conclusions based on
the correlation coefficient until you have
tested it for significance as follows:

(a) Multiply r by V/n, where = is the
number of pairs of measurements used
to determine r. Call this “¢.”

(b) If ¢ is greater than 3, consider that
the correlation is significant. If ¢ is
less than 3, the correlation may not be
significant. The lower the value of .
the less likely it is that the correlatior
issignificant.

If the correlation is not definitely significant as
determined above, this may be due to (a) real
absence of correlation or (b) insufficient data.
If the engineer has reason to believe that corre-
lation should exist he may wish to obtain more
data, calculate a new value of r, and test the
new value for significance.



Cell width 38 3§ 28 3§ 38 S§- 88 3§
for X. ) 5 = 3 &
gz 81 §§ g3 22 & &¢ 88 >
Cell S1 31 81 81 84 81 &4 R y f Jy v fzy
width for Y.
64.0-68.4 +4 0 0 0 0
59.5-63.9 XXX +3 3 +9 27 | +27
XXX
55.0-59.4 X XXXX | XXX +2 12 +24 48 | +52
50.5-54.9 X XX xxx | x +1 7 +7 7 +8
46.0-50.4 XX X 0 3 0 0 0
41.5-45.9 XX X X -1 4 —4 4 +7
37.0-41.4 X XX -2 3 -6 12 +20
32.5-36.9 | x -3 1| -3 9| +12
28.0-32.4 | «x X —4 2 -8 32| +28
23.5-27.9 -5 0 0 0 0
z -4 | =3 =2| -1 0| 41| +2| +3||Totals 35 +19 139 | +154
(A) (B) ©)
I 3 5 0 4 5 o) 10 8 35 n |+.543| 3.971 |+4.400
(D)
fz |-12|-15| of -4 0| O |+20|+24(| +13 |+.371
(E)
fz* | 48| 45 0 4 0 0| 40| 72 209 | 5.971
To obtain the values in the Z fzy column, calculate fzy separately
for each one of the “boxes.” Then total all the fzy's for each row
and enter in the Z fzy column.
2=D=+4.371 #=,138=F
§=4=+.54 §2 = .205 =G
%y = Dtimes A = .2015 = H
oz=+VE —F =+/5.833 = 2,415 = J
oy = VB — G =+/3.676 = 1.917 = K
oz0y = J times K = 4.630 = L
Coefficient of eorrelation = ¢ z H_ +:gg5 = +.907 =r
To test whether the apparent correlation is significant, make a {-test as follows:
¢ (no. of sigma) = r times V2 = .907 X /35 = 5.38
If ¢ is greater than 3 consider that there is significant correlation.
L

Fig. 142. Calculation of the coefficient of correlation.
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Regression of ¥ on X

r times oy
= =

Cell width for X values = 4500 = w
Cell width for ¥ values = 4.5 =m

oz = J times w = 10868
oy = K timesm = 8.626

X = Midpoint of cell z = 0, plus (D times w)
67245 + 1670 = 68915

¥ = Midpoint of cell 3 = 0, plus (4 times m)
48.2 4 2.44 = 50.64

.907 times 8.626

b . 10868 = 0007199
a =¥ — (btimes X) = 50.64 — 49.61 = 1.03
Y =a+4 bX
Regression of X on Y:
b = rtin::s oz _ .907 t;nxee;610868 = 1142.7
a =X — (btimes ¥) = 68915 — 57866 = 11049
X =a+bY

Fig. 143. Calculation of lines of regression. The values are obtained from Figure 142,

Relationship Between z and y

r=+41.0 Strong, positive,
r=40.5 Weak, positive.
r= 0 No correlation.
r=-—0.5 Weak, negative.
r=-1.0 Strong, negative.

As z increases, y always increases.

As z increases, y tends in general to increase.
z and y are independent.

As z increases, y tends in general to decrease.
As z increases, y always decreases.

Fig. 144. Meaning of the coefficient of correlation.

E-4 OTHER INFORMATION
ON CORRELATION

For further information on correlation see

References No. 5, 13 and 26. These references
give information on multiple correlation, par-
tial correlation and curvilinear correlation, none
of which are covered in this Handbook.
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PART F
Control Chart Patterns

This part of the Handbook gathers together much of the information needed by the engineer in
interpreting control chart patterns for process capability studies or designed experiments. It is
assumed that the engineer is already familiar with the elementary theory of control charts as given
on pages 5-12 and also with the method of testing control chart patterns for unnaturalness as given
on pages 23-30. It is also assumed that the engineer is familiar with the practical analysis of
shop charts as discussed in Part C of the Shop Section and of process capability studies as discussed
in Engineering Part A. The present material does not duplicate either the elementary theory or
the practical analyses. It is intended to be used as supplementary reference material for those in-
terested in a more thorough understanding of control charts.

F-1 CONTROL CHART THEORY

F-1.1 Control charts in general

The control chart in essence is a set of statis-
tical limits applied to a sequence of points
representing a process under study. The data
comprising each individual point are random,
but the points themselves are plotted in some
deliberately chosen non-random arrangement
selected to represent the most important vari-
able. See Figure 145.

The data included in this point
constitute a ‘“random’’ sample.

>

<The order from point to point is not ran-
dom. It is arranged according to time.

b - ——— —— — — e —— ———

R

b v - - —— ———— — — — — ——

Fig. 145. Theory of the control chart: meaning of
random samples.

In a process capability study, the most im-
portant variable is usually considered to be
time. Consequently, the points are plotted in
the order of time; that is, in the order of pro-

+

duction or (if the test method is one of the fac-
tors to be studied) in the order of testing.
Where a process capability study is to be
broken down by ‘‘production paths,” the sepa-
rate paths constitute an important variable,
and therefore the points are plotted according
to these paths. In a designed experiment the
important variables are in turn the different
factors included in the experiment. Conse-
quently, the points are arranged and re-ar-
ranged according to these factors.

The control chart tests the arbitrary or non-
random arrangements of points to determine
whether they behave as if they were random.
If the plotted points indicate nothing but
randomness, this tends to show that the vari-
able which formed the base of the arrangement
is not a significant variable.

On the other hand, if the points indicate that
non-randomness has entered the data, this
tends to show that the variable on which the
arrangement was based is actually a significant
variable.

F-1.2 Assignable causes

The control chart has a unique ability to de-
tect and identify causes. First the pattern is
tested for evidence of unnaturalness as ex-
plained on pages 23-30. Unnatural patterns
are then associated with appropriate causes.
The “causes” are extraneous disturbances or
influences which interfere with or change the

149



Assignable Causes
Associated with things which are:

Unnatural
Disturbed
Unstable
Ion-homogeneous
Mixed
Erratic
Abnormal
Shifting
Unpredictable
Inconsistent
Out-of-the ordinary
Different
Important
Significant

Non-Assignable Causes
Associated with things which are:

Normal

Natural

Stable

Undisturbed

Homogeneous

Coming from a single
distribution

Not changing

Steady

Predictable

Same

Consistent,

Statistically constant

Non-sgignificant

Fig. 146. Conditions associated with assignable and non-assignable causes.

ordinary behavior of the process.

The causes which disturb a process are called
“assignable causes,” because the reasons for
them can be identified or “assigned.” Assign-
able causes are always associated with ‘“‘un-
natural’”’ behavior—that is, with something
out of the ordinary or some change in the cause
system.

The “natural” variation in the process is also
the result of causes, but these are known
as ‘“‘non-assignable’” causes. Non-assignable
causes are relatively small in magnitude. They
are also numerous, closely intermingled and
statistically in balance. It is not possible to
identify or ‘‘assign” such causes without
going to special effort.

The following is a description of how the
control chart detects assignable causes.

(1) When we break a series of measurements
into very small samples and plot them, (for
example, in the order of time), this forces
any disturbing causes to show up in one of
two ways.

(a) Some disturbances come and go in the
process pertodically (occasional dis-
turbances).

A machine setter changing a setting
will cause a periodic disturbance in
the process. Occasional causes like
this will not affect observations that
are close together, as in a small sam-
ple, but they will affect observations
that are farther apart or in different
samples.
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These are called causes operating
“between samples.”

(b) Other disturbances do not come and go
on an occastonal basts but exist in the
process for considerable periods (con-
tinuous disturbances).

For example, a regular mixture of
product made by several machines or
operators may constitute such a dis-
turbance. Continuous causes like this
will affect the observations in a single
small group or sample as much as they
affect observations that are farther
apart or in different samples.

These are called causes operating
“within samples.”

(2) ‘“Between sample” causes tend to pro-
duce the effects known as instability,
cycles, trends, systematic variation etc.
“Within sample’’ causes tend to produce
the effects known as stratification and
stable forms of mixture. ‘“Between sam-
ple’”’ causes tend to have patterns too wide
for the control limits, while “within
sample”’ causes tend to have patterns too
narrow for the control limits. The only
thing that will produce a long-continued
natural pattern on the control chart is the
absence of disturbing causes within or be-
tween samples.

Not all assignable causes in a process are bad
or need to be eliminated. For example, tool-
wear is an assignable cause, but it is accepted
as an essential part of any process which in-



volves tooling. Assignable causes may also be
the source of important information, as shown
on pages 35 and 54.

As a rule, however, assignable causes need to
be either eliminated or restricted in some way in
the interests of economical manufacture. In
any case, whether we intend to eliminate them
or not, we need to be aware of their presepce in
the process and of their magnitude.

F-1.3 Rational sub-groups

One of the chief sources of the power of the
control chart is the manner of planning the
samples before data are even collected. The
samples are planned in such a way that, to the
best of our knowledge, the units in any one
sample should be a ‘“rational subgroup.” A
rational subgroup is one which we believe, for
rational or logical reasons, is as free as possible
from assignable causes. That is, if we believe
that different machine settings may have an
effect on the characteristic being plotted, we
see that all units in the sample come from the
same setting. If we believe that different
batches of material may have an effect, we see
that all units in one sample come from the same
batch, etc. A series of samples will then show
the effect of differences in machine settings,
batches ete.

We say that a rational subgroup is one that
represents, as nearly as possible, a homogeneous
set of conditions. In general, we know that
manufacturing conditions tend to change from
time to time as a result of variables of which
we may not be aware. Consequently, to obtain
subgroups which have the best chance of being
rational, we attempt to include in one sample
units made as nearly as possible at the same
time.

A small group of consecutively produced
units from a process is likely to be a “rational
subgroup.” That is, it is likely to be made up
of a randomly produced set of units represent-
ing the immediate state of the process at the
time the sample was selected.

It is possible that, in spite of our precau-
tions, the subgroups we believed were rational
may contain assignable causes. Inthat case the
causes tend to show up as the ‘“within sample”
causes referred to in paragraph F-1.2. ‘“Within
sample” causes are harder to interpret than
“between sample’’ causes. For this reason, the

careful collection of data in rational subgroups
will greatly simplify the use of the control
charts.

F-1.4 Order of production (or testing)

When theory states that the samples for con-
trol charts should be taken, whenever possible,
in the order of production, keep in mind that
this means the order of production as related
to a single system of causes. The principle of
the rational subgroup (see above) is always
assumed when we say ‘‘order of production.”

If a process checker is taking samples from a
machine with multiple spindles, or multiple
positions or heads, then a series of consecu-
tive units from the machine as a whole will not
give him a sample in the “order of production”
as the term is used here. If the machine has six
heads, he should take every sixth unit in order
to get a sample in the order of production from
a single head, etc.

Order of production is important primarily
because it aids in obtaining a rational sub-
group.

F-1.5 Technical terms associated with
control charts

Control limits

Control limits are mathematical or statistical
limits used to interpret the pattern on a control
chart. Unless otherwise noted, the control
limits referred to in this Handbook are 3 sigma
control limits. Control limits are derived from
a knowledge of distribution theory and apply
to the particular statistic (X, R, p, individual
measurement etc.) which is being plotted on the
control chart. It is important not to confuse
“control limits”” with specification limits, or
with the so-called “natural limits”’ of the proc-
ess, which show the natural spread of individual
units.

Natural process limits

Three sigms limits for the individual units
produced by a process in control are sometimes
called the ‘“natural” limits of the process. The
natural limits have no necessary connection
with specification limits or any other arbitrary
limits. Natural limits may be either broader
or narrower than the specifications set by en-
gineers.
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“Natural limits’” are the limits which the
process is able to hold when operating normally
under the influence of non-assignable chance
causes. The term ‘natural tolerance” is some-
times used in place of ‘“natural limits.” See
page 61.

Centerline

The centerline on a control chart is a line
which passes through the center of a real or as-
sumed set of fluctuating points from which the
centerline was calculated. On any particular
control chart the centerline may or may not
pass through the points actually plotted. For
example, the centerline may have been fixed by
engineering decision, or it may have been ob-
tained from a series of past data rather than
the data currently plotted.

Level

The level on a control chart is a line which
passes through the center of the series of points
actually plotted. The line may be drawn on
the chart or it may be imaginary. The level
may or may not be the same as the centerline,
since a level is always related to the actual
plotted points while the centerline may have
been obtained from some other source. It is
possible for the same control chart to show more
than one level in its patterns.

F-2 INTERPRETATION OF
X CHARTS

The X chart shows where the process is
centered. It represents the average of the dis-
tribution which the process is creating. If the

center of the distribution shifts, the X pattern
will shift with it. If the center of the distribu-
tion follows a trend up or down, the X pattern
will follow the same trend. The conditions
which the X chart is intended to reflect are
shown in Figures 147 and 148.

F-2.1 Causes affecting the X chart

The most common causes which will affect
an X chart are the following:

(1) Direct or “true” X causes. These are
causes capable of affecting an X chart
directly. All such causes have one element
in common: that is, when they enter the
process they are capable of affecting all the
product at once or in the same general way.
When the temperature changes in a plat-
ing bath, it affects all the parts being
plated. When a decision is made to use a
thicker stock, all the parts become thicker.
This type of cause is able to shift the center
of a distribution without affecting its
spread. It is the most common type of
cause which shows up on the X chart.

The X chart can be affected in this way
by
Changesin:
Material.
Operator.
Inspector.
Machine setting.
Plating current.
Temperature.
Strength of solution.
Time in oven or tank.
Dimension of a mold or cavity.

b
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i

Fig. 147. Shift in level.
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Fig. 148. Trend.



Average

A

—

—«— Average

There is no X cause
even though the
average has shifted.

Fig. 149. Original average.

Winding tension on a reel.
Hardness of stock.
Supplier.
Calibration of a gage or test set.
Wear of tool.
Adjustment of the process or machine.
Expansion or contraction.
Aging.
Drift.
Humidity, moisture content, etc.
Misunderstanding of a drawing, or
modification of a requirement.

Disturbances in the X chart (not asso-
ciated with disturbances in the R chart)
are almost invariably the result of causes
similar to the above.

(2) Indirect or “false” X causes. There are
three types of cause which can affect the X
chart indirectly but are not true X causes.
These causes show up on the R chart as
well as the X chart and are in reality R-
type causes. They appear on the X chart
only as a reflection of the R chart. The
engineer should carefully study the follow-
ing:

A. The X chart can be affected by a
change in the proportion of distributions
which constitute a mixture. For example,
Figure 149 shows a mixture of distributions
and their original average. Figure 150
shows how the average is increased merely
because there are fewer units in one of
the component distributions. This type
of cause can ordinarily be detected on the
R chart, and should not be confused with
the true X causes listed abeve.

Fig. 150. Change in average.

B. Secondly, the presence of freaks in the
data, or anything tending to create a pro-
nounced skewness, will cause the X chart to
follow the R chart and may throw the X
chart out of control. See Figure 151.

Fig. 151. X chart follows R chart.

C. Finally, if the level on the R chart in-
creases or decreases with respect to its pre-
viously calculated limits, the control limits
for the X chart will no longer be accurate,
and therefore must not be used to determine
whether the X points are out of control.
See Figures 152 and 153 on the next page.

These three possibilities are the reason for the
rules given repeatedly in this Handbook: “Do
not attempt to interpret an X chart while the R
chart is out of control.” ‘“Eliminate the R
causes first and the chances are that the X
causes will disappear along with them.”
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Fig. 152. X chart looks out of control but is not.
Limits should be recalculated.

Fig. 153. X chart looks stratified but is not. Limits
should be recalculated.

F-2.2 Mistakes to be avoided on X charts

The most common mistakes made in inter-
preting X charts are these:

(1) Attempting to interpret an X chart when
the R chart is not in conirol. Examples of
this were given above.

(2) Attempting to relate the X chart to a
specification without taking account of the
distribution’s shape. In particular, be care-
ful not to assume normality in a distribu-
tion which may have been truncated or
screened.

(3) Assuming that most of the product is at or
near the “average.” Under ordinary cir-
cumstances this is a safe assumption, but
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the engineer should remember that it does
not hold in all cases. It is possible for the
product to consist of a bimodal or two-
headed distribution with half of the prod-
uct on the low side and half on the high
side. In that case the average would be at
the mid-point between the two portions
of the product, and there might actually
be no product on or around the average.
See Figure 149 on page 153.

F-2.3 Summary

X charts are used to show trends, to indicate
whether there is stability in the distribution’s
center, and under certain circumstances to in-
dicate the relationship between the process and
the specification. X charts should always be
interpreted in conjunction with R charts, since
mixtures or other abnormalities which show up
plainly on the R chart are capable of causing
apparent changes in level or pattern on the X
chart.

F-3 INTERPRETATION OF
R CHARTS

The R chart is a measure of uniformity o1
consistency. It reacts to a change in variation
or spread. If one process is producing more
uniform results than another process, the R for
the first process will be lower. In general, we
want the level on an R chart to be as low as
possible.

If all units in the product are receiving the
same treatment, the R chart will tend to stay in
control. If the R chart does not remain in con-
trol or if its level rises, some units are receiving
different treatment from the others. This may
mean that a separate system of causes has been
introduced, or there may be several different
systems affecting different portions of the prod-
uct at the same time. For example, instability
of a test set or intermittent contacts on a relay
or timer may result in the introduction of more
than one system of causes.

If the level on the R chart rises and then
stays in control at a higher level, it means that
some new element has entered the cause system
and has become a regular part of the process.
Ordinarily an element which causes the R chart



to rise will be an undesirable element. Ex-
amples of undesirable causes are: a change to
a poorer quality material, increased production
pressure, less competent operators or inspec-
tors, less carefully designed tools and machines,
a less adequate maintenance program, ete.
The R chart will also rise if the component dis-
tributions in a mixture bécome more widely
separated. This will tend to show up as strati-
fication or mixture.

If the level of the R chart decreases and the
chart then stays in control at the lower level,
it means that some element which was treating
the units differently has now been eliminated.
For example, we have eliminated the poorly
trained operators by re-training them; we have
eliminated dirty pumps or sockets by a more
careful maintenance program; we have elimi-
nated the need for excessive play in the fixtures
by getting better piece parts; we have reduced
carelessness by installing control charts.

The R chart is far more sensitive to many im-
portant types of assignable cause than any
other control chart. In particular the R chart
is the best method of detecting mixtures, strati-
fication, freaks, erratic conditions, interactions
and general statistical instability. Since these
conditions will seriously affect the engineer’s in-
terpretation of any other chart, the R chart
must be considered the most important chart
in a process capability study.

The principal conditions which the R chart
is intended to reflect are shown in Figures 154,
155 and 156.

F-3.1 Causes affecting the R chart

All causes which affect an R chart have one
element in common: that is, they are able to
treat part of the product differently from the
rest of the product. For example, a poorly
trained operator does not do his work the same
way every time, so part of the product receives
different treatment. Similarly, a careless in-
spector does not insert his gage the same way
every time; a machine in need of repair does
not index the same way every time, etc. Causes
which affect only a part of the product will
change the spread of the distribution. The
change in spread may or may not tend also to
shift the center.

Among the causes which will affect an R
chart are the following:

Fig. 154. Change in spread.

Fig. 155. Mixture of distributions.

>

Fig. 156. Presence of freaks.

Poorly trained operator or inspector.

New operator or inspector.

Tired operator or inspector.

Material which is not uniform.

Fixture which is loose or has excessive play.
Machine in need of repair.
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Something out of alignment.

Loose threads or screws.

Broken bolts.

Parts stuck together in barrel plating.

Testing equipment which is unstable.

Holders or fixtures which are warped.

Automatic controls which can go out
of order.

Parts left at the end of a rod or strip.

Set-up parts.

Damage.

Careless handling.

Selective system of causes; for example, gold
plating behaves differently when parts are
chamfered than when they are burred.

In addition to the above, the R chart will be
affected by mixtures of different “lots.” . The
engineer should remember this in obtaining
data for a process capability study, particu-
larly in view of the fact that his control limits
and other estimates will be based on the R
chart.

Occasional freaks, “wild units,” or “maver-
icks” will show up as isolated high points on
the R chart. These are easily recognized be-
cause they are so different from the rest of the
pattern.

F-3.2 Summary

R charts are used to show the magnitude of
the spread of the process being studied, to in-
dicate whether the spread is stable, and to re-
veal information associated with mixtures, in-
teractions and various forms of instability. R
charts should always be interpreted before the
corresponding X charts are interpreted, in view
of the importance of this type of information.

F-4 JOINT INTERPRETATION OF
X CHARTS AND R CHARTS

Since X charts and R charts are concerned
with different phases of the distribution being
studied, the two charts should finally be in-
terpreted in conjunction with each other.
There are two reasons why this is important.

(1) The charts re-inforce each other in giving
information about the distribution. It is
necessary to consider both center and
spread if the information is to be useful.
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(2) By considering the charts together it is
possible to obtain new information which
was not obtainable from either chart con-
sidered separately. The additional in-
formation has to do with peculiarities or
abnormalities in the shape of the distribu-
tion from which the samples are being
taken.

The basis for obtaining this additional in-
formation is as follows:

When samples are taken at random from a
normal distribution, there is no correlation be-
tween the X and R values. That is, the fact
that an X value is high does not tend to make
the R value high or vice versa. There is no
necessary relationship between averages and
ranges.

Consequently, when a series of samples are
plotted on a control chart, if those samples
came from a normal population, the X points
and R points do not tend to follow each other.
Both of the patterns appear to be unrelated or
truly “random.”

If samples are taken from a very skewed
population, there will be definite correlation
between the X points and the R points. If the
population is skewed in such a way that the
long tail is on the high side (positive skewness)
there will be positive correlation between X
and B. The X points will tend to follow the R
points, moving in the same direction.

If samples are taken from a population which
is skewed with its long tail toward the low side
(negative skewness) there will be negative cor-
relation between the X points and the R points.
The X chart will tend to become an “inverted
image’’ of the R chart. The X points tend to
follow the R points, but in the opposite direc-
tion.

The greater the skewness, the more definitely
the points will tend to follow each other.

Do not confuse changes in level on the X
chart and R chart with the “tendency to fol-
low”” which is being discussed here. The “tend-
ency to follow” means that the ¢ndividual
points move up and down together, not the
general level. See pages 176-177.

In brief, the engineer should be alert for any
indications on the separate charts or on the X
and R combination which tend to show that the
patterns are behaving in anything but a random
manner.



F-5 INTERPRETATION OF
p-CHARTS AND OTHER
ATTRIBUTES CHARTS

A p-chart shows the proportions into which
a distribution has been divided. Frequently a
p-chart is used to represent ‘“percent defective,”
and the distribution has been divided into two
parts, defective and non-defective, by a simple
process of comparing the units of product with
a specification and then classifying them in one
or the other of these two groups. See Figure
157.

However, p-charts can be used to represent
any proportion and need not be associated with
product which is defective. For example, a p-
chart can be used to show the proportion of
units which fall within a certain voltage range
as compared with the proportion which fall
within other voltage ranges. In all cases, the
p-chart represents a division of the distribution

Defective

Non-defective

on the basis of some previously determined
system of classification.

p-Charts can be combined or sub-divided at
will; that is, the proportion represented may be
the proportion classified on the basis of a single
characteristic only, or it may be the proportion
with respect to a number of characteristics
taken together. The interpretation of a p-
chart depends to a considerable extent on
knowledge of the number of characteristics
which formed the basis for the classification.
This is particularly important in the case of a
process capability study where early p-charts
appear to show fairly good control. If the p-
chart results from a combination of many char-
acteristics, the apparent control may be reflect-
ing a “statistical balance” among these charac-
teristics rather than the “singleness of a cause
system” which is the real measure of process
capability.

The conditions which a p-chart is intended to
reflect are shown in Figures 158 and 159.

2% %

Fig. 157. . Basis for a p-chart: some form of
classification.

Fig. 158. Change in percent defective (or other basis
for classification).

19, Defective

20% Defective

Combination samples, drawn
from non-homogeneous popu-

lations, form stratified pat-
terns on p-charts similar
to those on an R chart.

Fig. 159. Stratified sampling.
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F-5.1 Causes affecting the p-chart

The p-chart does not reflect any characteris-
tic of the distribution directly. That is, it does
not indicate the average, shape or spread. It
shows simply the arbitrary classification of the
distribution into two or more parts. For this
reason it is harder to identify specific causes or
types of cause as likely to affect the p-chart.

The causes for out-of-control conditions on p-
charts may include anything which is capable of
affecting the center, spread or shape of the
product distribution. The p-chart is also very
sensitive to causes which affect the standards
being used as the basis for classification.

In tracing the causes affecting p-charts the
engineer should rely heavily on job knowledge.
He should check the surrounding conditions
which are associated with the chart and investi-
gate the process elements which he believes
might contribute to those conditions. Among
the elements which may be investigated are the
following:

(1) Materials (including both processing and
inspection).

(2) Machines (including tools, fixtures, gages
and other facilities).

(3) Methods (including layouts and other in-
formation, deviations from prescribed pro-
cedures, changes in motion patterns or
changes in the operators’ “efficiency”’).

(4) Men (including their training, attitudes
and experience, whether they are properly
instructed, whether they are using control
charts).

Throughout any investigation into the causes
affecting p-charts, the engineer should re-
member that large variables may be operating
in the process from time to time without show-
ing up on this chart. For example the distribu-
tions in Figure 160 may all look alike on a p-
chart because they all have the same percent
defective.

2% 2%

2%

Fig. 160. Distributions 2%, defective.
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F-5.4 Special note on attributes
control charts

The information given on pages 157-159 ap-
plies to all attributes control charts, including
np-charts, c-charts and u-charts. All attributes
charts are interpreted in the same way as p-
charts, and the same precautions should be ob-
served in deciding how many characteristics
to include and in drawing conclusions.

F-6 INTERPRETATION OF A
CHART FOR INDIVIDUAL
MEASUREMENTS

This chart shows the fluctuations of individ-
ual measurements in some predetermined
order of plotting. The basis for determining
the order is frequently time, but in special
analyses, including designed experiments, the
order may correspond to sources of data, codes,
type of product, or some other basis for identi-
fication. The chart of individuals is used to
show:

a. General trends.

b. Fluctuations of unusual magnitude.

c. Clustering of abnormal measurements at
certain points.

d. The relationship between the individual
measurements and some previously estab-
lished standard or specification.

Many of the conditions which show up on an
X and R chart can also be detected, somewhat
less precisely, on the chart of individuals. The
tests for unnatural patterns are less reliable
than on an X and R chart, since the individuals
chart may be seriously affected by any change
in the shape of the distribution. Itissometimes
advisable to check the conclusions drawn from
a chart of individuals by obtaining more data
and plotting an X and R chart.

On the other hand there are certain types of
information which may show up more plainly
on an individuals chart than on an X and R
chart. Among these are the following:

(1) Cycles (regular repetition of pattern)

Short cycles, in particular, may not show up
for some time on an X and R chart.
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(2) Trends (continuous movement up or
down)

These may show up more rapidly on a chart
of individuals. On the other hand it is easy
to see many apparent trends which do not
actually exist.

(3) Mixtures (presence of more than one
distribution)

This shows up on the chart of individuals
in much the same way that it shows up on an R
chart. That is, there is an absence of points
near the middle of the pattern with excessive
numbers of points toward either edge. On the
chart of individuals this can often be detected
by the fact that lines connecting the individual
dots tend to be long and rather similar in
length instead of showing a random mixture
of long and short lines intermingled with each
other.

(4) Grouping or bunching (measurements
clustering in spots)

If all the freaks on the high side tend to
occur at one or two places instead of being
scattered randomly throughout the data, this
may be detected more promptly on the indi-
viduals chart than on an X and R chart. The
individuals chart may also show other peculiari-
ties in the data—for example, that the measure-
ments tend to occur in pairs.

(5) Relation between the general pattern of
individuals and the specification

This chart shows plainly whether the indi-
viduals plotted are in or out of limits; whether
they are well centered between specifications
or close to one side.

F-6.1 Causes affecting the chart
for individual measurements

The individuals chart can be affected by any
of the causes which affect either X and R
charts or p-charts. While it is not possible
to distinguisk. between X disturbances and R
disturbances with anything like the precision
which is possible on X and R charts, neverthe-
less the eye can pick up many visual impressions
of changes which affect either the center or
spread.



F-6.2 Mistakes to be avoided on a chart
for individual measurements

On a chart for individuals the sample size is 1,
and the control limits are the same as would be
used on an X chart where n = 1. The “v/n”
relationship still holds in comparing the control
limits with a specified maximum or minimum
limit (see pages 30-31), but in this case (since
n = 1) the control limits may actually coincide
with the specification.

In considering the centerline on a chart for
individuals, remember that the shape of the
distribution is very important in determining
what portion of the product will exceed the
specified limits. If the distribution is skewed
in the direction away from a certain limit it is
safe to run closer to that limit, and vice versa.

F-6.3 Summary

Charts of individual measurements are in-
tended to convey the same general type of in-
formation as an X and R chart. The control
limits are, in general, less sensitive and precise.
The chart must be interpreted with consider-
ably more caution. Where necessary check the
conclusions on the individuals chart by making
an X and R chart.

F-7 ANALYSIS OF PATTERNS

The following Sub-section contains descrip-
tions of 15 common control chart patterns, ar-
ranged in alphabetical order by name.

1. Cycles.
2. Freaks.
3. Gradual change in level.

4. Grouping or bunching.

5. Instability.

6. Interaction.

7. Mixtures.

8. Natural pattern.

9. Stable forms of mixture.

10. Stratification.

11. Sudden shift in level.

12. Systematic variables.

13. Tendency of one chart to follow another.
14. Trends.

15. Unstable forms of mixture.

Each pattern is explained in a short verbal

description and is illustrated by a typical draw=-
ing of a control chart. Wherever possible, the
underlying distributions represented by the
pattern are also shown. Beneath each pattern
are listed four types of control chart—X, R, p
and individuals—and a typical list of causes
likely to be associated with each chart. This
information can be used in interpreting a con-
trol chart as follows:

(1) From inspection of the control chart,
decide which type of pattern the chart
represents.

(2) Look up this pattern in the following
pages and compare the chart with the il-
lustrative drawing.

(3) Study the verbal description of the pat-
tern, and relate its description to what is
known about your process. Select the ap-
propriate list of causes—X, R, p or in-
dividuals—and attempt to think of similar
causes which may be operating in your
process.

For an example of the manner in which this
information is used. see pages 66-71.

In addition to the information available from
patterns, there are many other practical aids in
interpreting control charts. Some of these are
given in the Engincering Section, pages 53-56
and 61-65. Others can be found in the Shop
Section, pages 189-190 and 217-219.

F-8 CYCLES

Cycles are short trends in the data which
occur in repeated patterns. Any tendency of
the pattern to repeat, by showing a series of
high portions or peaks interspersed with low
portions or troughs, is an indication of an as-
signable cause, since the primary characteristic
of a random pattern is the fact that it does not
repeat. The causes of cycles are processing
variables which come and go on a more or less
regular basis. In the case of machines they
may be associated with a succession of move-
ments, positions or heads. In the case of
manually controlled operations, they may be
associated with fatigue patterns, shipping
schedules, conditions affecting the day and
night shifts. In some types of product they
may be associated with seasonal effects which
come and go more slowly.
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Fig. 163. Cycles.

The underlying distribution is wider than
would be expected from an R chart. It may be
bimodal, showing two humps or peaks. Cycles
are identified by determining the time interval
at which the successive peaks or troughs ap-
pear and relating this interval in some manner
to the elements in the process. For example:

e An engineer discovered that every
seventh measurement was lower than
the others. He was able to relate this
to a fixture containing 7 holes.

e A supervisor found that every third
sample on a continuous piece of wire
was suspiciously high. He knew that
the samples had been taken 25” apart.
He was able to relate this to a disc
over which the wire passed which was
75" in circumference.

e Cyclical patterns in riveting opera-
tions were found to be related to times
of theday. The operator’s technique
varied according to the beginning or
end of the week, lunch periods, rest
periods, change in shifts, etc.

Other causes which can create this type of
pattern are as follows:

X Chart
(R chart must be in control.)

Seasonal effects such as temperature and
humidity.

Worn positions or threads on locking devices.

Roller eccentricity.

Operator fatigue.

Rotation of people on job.

Difference between gages used by inspectors.

Voltage fluctuation.
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Fig. 164. Distributions associated with cycles.
Regular difference between day and night
shifts.

R Chart

Maintenance schedules.

Operator fatigue.

Rotation of fixtures or gages.

Regular difference between day and night
shifts.

Wear of tool or die (causing excessive play).

Tool in need of sharpening (causing burrs, etc.).

p-Chart

Sorting practices.
Sampling practices.
Regular difference between suppliers.

Individuals Chart

Any of the causes affecting X charts or R
charts.

F-9 FREAKS

Freaks result from the presence of a single
unit or a single measurement greatly different
from the others. Such units are generally pro-
duced by an extraneous system of causes. Oc-
casionally, however, the measurements that
look like freaks are in reality a normal part of
the process. For example, dielectric break-
downs may actually be the long tails of a dis-
tribution of dielectric strength. In this case
the “freaks’ are a matter of degree.

Another common source of freaks is a mis-
take in calculation. Failure to subtract prop-
erly in obtaining the R point, or failure to
divide by the proper number in calculating
an X or p value, will sometimes have this effect.



Occasionally an apparent freak is the result of
a plotting error, as when the person plotting
the point has misinterpreted the scale. Acci-
dental damage or mis-handling may also result
in freaks.

Freaks are among the easiest of the patterns
to recognize, and it is also simple in most cases
to identify the cause. The mere fact that the
freak is so different from other units in the
product makes the identification simpler.

Typical causes which can create this type of
pattern are the following:

X Charts
(R chart must be in control.)

Freaks do not ordinarily show up on an X
chart without a corresponding indication
on the R chart. A possible exception is the
case where a sudden abnormal condition in
the process may affect all or most of the
units in the sample. Among such condi-
tions may be the following:

Wrong setting, corrected immediately.

Fig. 165. Freaks.

Error in measurement.

Error in plotting.

Data obtained on a non-linear scale
(logarithmic or exponential.) For example,
insulation resistance.

Incomplete operation.

Omitted operation.

Breakdown of facilities.

Accidental inclusion of experimental units.

R Chart

Accidental damage in handling.

Incomplete operation.

Omitted operation.

Breakdown of facilities.

Experimental unit.

Set-up parts.

Error in subtraction.

Occasional parts from end of a red or strip.

Measurement error.

Plotting error.

Some obvious physical abnormality which can
be detected by examining the units in the
sample that produced the fréak point.

p-Chart

Variations in sample size.

Sampling from a distinctly different distribu-
tion.

Occasional very good or very bad lot.

Individuals Chart
Same as R chart.

Occasionally freaks result from the fact that
the characteristic being plotted has a non-

Fig. 166. Distribution associated with freaks
(bimodal).

Fig. 167. Distribution associated with freaks

(L-shaped).
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FREQUENCY
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Fig. 168. Source of apparent freaks.

linear behavior. For example, a characteristic
may rise sharply at a certain temperature or
pressure: or it may drop off abruptly in a
“shoulder” as shown in Figures 168 and 169.
If the process is running near the steep slope of
such a curve, so that several units in the sample
reflect the high part and some other unit or
units reflect the drop, this may show up as a
freak.

F-10 GRADUAL CHANGE IN
LEVEL

A gradual change in level will ordinarily in-
dicate one of two things:

(1) There is some element in the process
which is capable of affecting a few units at
first and then more and more as time goes
on. For example, a group of new opera-
tors has been added. As the operators be-
come better trained (which happens at
varying rates of speed) more and more of
the distribution is affected. The same
thing can happen when newly designed
fixtures are being introduced one by one,
when poorly controlled lots from the store-
room are being replaced by better con-
trolled lots, when a maintenance program
is gradually being extended to cover more
and more equipment, when operators be-
gin to follow their control charts more and
more closely, etc. After the change has
taken place the chart tends to settle at
some new level.

(2) It may be that some element in the proc-
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Fig. 169. Another source of apparent freaks.

ess has been changed abruptly, but be-
cause of the amount of product “going
through the mill” it shows up gradually
at the later operations. This could be any
one of the causes mentioned under “‘Sud-
den Shift in Level.”

In either case a gradual change in level pro-
duces patterns like the one in Figure 170. The
total distribution, including both levels, is wider
than would be expected from an R chart.

Gradual changes which do not tend to settle
down to a new level are spoken of as “trends.”
Gradual changes in level (with the change
occurring in the direction of improvement) are
very common in the early stages of a quality
control program.

Typical causes which will create this type of
pattern are the following:

X Chart
(R chart must be in control.)

Gradual introduction of new material, better
supervision, greater skill or care on the part of
the operator.

Change in maintenance program.

Introduction of process controls in this or other
areas.

R Chart

Change to lower level:
Better fixtures.
Better methods.
Greater skill or care on the part of the opera-
tor.
Change to higher level:
Conditions opposite to the above.
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Fig. 170. Gradual change in level.

p-Chart

Any of the causes affecting X and R charts.
Addition or removal of requirements.
Relaxation or tightening of standards.

Individuals Chart
Same as X chart.

F-11 “GROUPING” OR
“BUNCHING”

One of the characteristics of a natural pattern
is that measurements of any given magnitude
tend to be scattered more or less uniformly
throughout the data. It isan indication of un-
naturalness if all or most of the similar meas-
urements occur quite close together. When
measurements cluster together in such a non-
random fashion it indicates the sudden intro-
duction of a different system of causes. For
example, the low points in Figure 172 came
from a pan of rejected parts which were shipped

Fig. 171. Distribution associated with gradual change

in level.

accidentally. A similar pattern was obtained
on a disc-spraying job when the mask occa-
sionally slipped and permitted conductive ma-
terial to leak over the edge of the discs. The
underlying distribution is a mixture, fre-
quently showing a few units distinctly sepa-
rated from the rest of the product.

Indications of this kind are sometimes ob-
served on X charts but they tend to occur more
frequently on charts for individuals, R charts or
p-charts. In many cases a chart of individual
measurements will be more sensitive in picking
up this type of disturbance than any other
chart.

Typical causes for non-random bunching of
the measurements are as follows:

X Charts
(R chart must be in control.)

Measurement difficulties.
Change in the calibration of a test set or meas-
uring instrument.

Fig. 172. Grouping or bunching.

Fig. 173. Distribution associated with grouping or
bunching.
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Different person making the measurements.
Shift in distribution for a limited period.

R Chart

Freaks in the data.
Mixture of distributions.

p-Chart

Change in technique of classification.

Shift in one of the underlying distributions of
product.

Changes in assortment of product.

Individuals Chart

Extraneous cause resulting in a totally dif-
ferent distribution for a limited period of
time.

Errors in plotting.

F-12 INSTABILITY

Instability of the pattern is shown by un-
naturally large fluctuations. The pattern is
characterized by erratic ups and downs, fre-
quently resulting in x’s on both sides of the
chart. The fluctuations of the pattern appear
to be too wide for the control limits. This
type of pattern may arise in either of two ways:

A. A single cause, capable of affecting the
center or spread of the distribution, may
operate on the process erratically.

B. A group of causes, each capable of shifting
the center or spread (or both), may operate
on the process in conjunction with one
another.

In the latter case the patterns of instability

may become very complex. The causes may be
more difficult to identify than the causes of
simpler patterns. The underlying distribution
is wide and frequently irregular in shape. It
may exhibit several peaks.

Instability in a process is frequently asso-
ciated with mixtures, and ‘“Unstable Mix-
tures” may be regarded as a special form of “In-
stability.” There are two ways of discovering
the causes of complex instability:

(1) Check the process for obvious “Unstable
Mixtures” as explained on pages 179-180.
These are the easiest causes of instability
to identify and eliminate. When the un-
stable mixtures are eliminated, the pattern
of instability may become much easier
to interpret.

(2) If the pattern is still complex, break the
process into smaller segments or opera-
tions and plot a separate chart for each.
Take the one whose pattern is most similar
to the original complex pattern, and break
it down still further. Continue in this
way until the pattern becomes simple
enough to interpret.

In seeking out the causes of complex pat-
terns, remember that the ultimate causes are
likely to be very simple. They appear to be
complicated only because they exist in complex
combinations. Among the common causes
for instability are the following:

X Chart
(R chart must be in control.)
Simple causes
Overadjustment of a machine (where the

Fig. 174. Instability on an £ chart. On an R chart the pattern is similar,
but the low points tend to gather just inside the lower limit, since they cannot

fall below it.
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Fig. 175. Distribution associ-
ated with instability.



operator resets on the basis of one or two
measurements instead of using a chart).

Fixtures or holders not holding the work in
position.

Carelessness of operator in setting temperature
control or timing device.

Different lots of material mixed in storeroom.

Piece parts mixed on the line (in different bins
or pans).

Code differences (which are related to dif-
ferences in design or in difficulty of as-
sembly).

Differences in test sets or gages.

Shop running deliberately on high or low side
of specification (causing other distributions
to be run off-center also).

Erratic behavior of automatic controls.

Complex causes

Effect of many process variables on an end
characteristic.

Effect of screening and sorting operations at
various stages in the process.

Effect of differences in testing or gaging meth-
ods after product has been accumulated for
shipment.

Effect of experimental or development work
being done by engineers.

In general, we attempt to keep complex causes
from affecting the X chart by locating X and
R charts as far back in the process as possi-
ble.

Note also that apparent instability on the X
chart frequently accompanies an R chart that
is out of control. In such cases the X chart
may appear to have erratic ups and downs
even when the center of the distribution is
actually stable. See pages 153-154.

R Chart
Instability on high side
Untrained operator.
Too much play in positioning or holding fix-
ture.
Mixture of material.
Machine in need of repair.
Unstable testing equipment.
Work holder warped.
Lapping plates worn.
Lapping materials not properly used.
Operator carelessness.

Assemblies off-center.

Defective piece parts.

Trouble with test set.

Instability on low side

Better operator.

More uniform piece parts.

Better work habits.

Possibly the effect of control charts installed in
other areas.

p-Chart
High side
Operator inexperience.
Operator carelessness.
Poor maintenance.
Defective piece parts or material.
Trouble with test set.

Low Side

Operator improvement.
Better sub-assemblies.
Better equipment or material.
Relaxation of standards.
Improper checking.
Other causes
Instability on the p-chart may also be caused
by:
Variations in sample size.
Occasional lots which are very good or very
bad.
Sampling from distinctly different distribu-
tions.
Non-random sampling.

Individuals Chart

Any of the causes which can affect the X chart
or R chart.

F-13 INTERACTION

Interaction is the tendency of one variable to
alter the behavior of another; the tendency of
two or more variables to produce an effect in
combination which neither variable would pro-
duce if acting alone. Interactions are studied
formally by means of designed experiments.
They are also detected informally by means of
process capability studies.

Interactions may be detected on an X chart
whenever the data have been identified in two
or more ways. See Figure 176 on page 168.

In addition, interactions due to variables not
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Fig. 176. Interaction on the .X chart: there is an

interaction between T and C.

previously identified can often be detected on
the R chart. See Figure 177.

The chart in Figure 177 is explained as
follows:

All variability in a process can be thought of
as the result of interactions. That is, potenti-
ally large variables exist in the process and
tend to occur at more than one level. The
effects of these are modified by other variables
which also exist at different levels. Machine
effects are modified by type of maintenance or
material. Operator effects are modified by
amount and kind of training. Effects due to
manual skill are modified by differences in tools,
tweezers or gages. It is difficult to think of
any process variable which is not, in reality, the
result of interactions.

In a designed experiment, where certain vari-
ables can be deliberately removed for analysis,
the effects of all other variables are treated as
“unanalyzed interaction.” They are included
in the residual or “‘experimental error.” In the
same way, in a process capability study, the
unanalyzed interactions are included in the R
chart. If significant variables exist and are
present at more than one level, they tend to in-
flate the R chart. If, by intention or other-
wise, one of the significant variables should
occur at one level only, this would immediately
remove some of the inflation from the R chart.

A low pattern on the R chart, like that in one
portion of Figure 177, indicates that some of the
inflation usually present in the process has
temporarily been removed. We conclude from
this that some important interacting variable
must have been present at one level only.
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The chart in Figure 177 shows that this
variable, if kept permanently at one level,
could reduce the spread of the process to less
than half its usual magnitude.

Low x’s on the R chart are one of the most
important indications which can occur in a
process capability study.

Identifying the interacting variables

Since low x’s on the R chart indicate that
some important variable was present at only
one level, this can be used to identify the im-
portant interactions.

o If the samples that produced the low
x’s were all from one inspector, the
inspectors are likely to be an impor-
tant interacting variable.

o If the samples that produced the low
x’s were all from one fixture, the fix-
tures are likely to be an important
interacting variable.

o If the samples that produced the low
x’s were all from newly lapped fix-
tures, the uneven or warped surfaces
of the older fixtures may be the im-
portant interacting variable. And so
on.

Remember that the spread can usually be re-
duced if any one of the interacting variables is
reduced to a single level. If one of the variables
cannot be reduced to a single level economically,
try réducing another. Some practical exam-
ples of this are the following:

Machines of different ages may constitute
an important variable, but only in the presence
of different degrees of maintenance. (There is
an interaction between machine age and
maintenance). Since it would not be eco-
nomically feasible to run the job with only one
machine, we concentrate on eliminating the dif-



ferencesin the effectiveness of the maintenance.

Similar interactions may exist between opera-
tor differences and different degrees of training
or supervision.

From this point of view, one of the chief ob-
jectives of a quality control program is to im-
prove the piece parts, improve the design of the
tool, provide better training or closer super-
vision, so that we can use different operators,
machines and batches of material and still get
uniform product.

For formal methods of studying interaction
in a designed experiment, see pages 94-97
and 99-101.

F-14 MIXTURES

In a mixture pattern the points tend to fall
near the high and low edges of the pattern with
an absence of normal fluctuations near the
middle. This pattern can be recognized by the
unnatural length of the lines joining the points,

Fig. 179. Separate patterns.

which tends to create a more or less obvious
“seesaw”’ effect. See Figure 178.

A mixture pattern is actually a combination
of two different patterns on the same chart—
one at a high level and one at a low level. If we
were to take an extreme mixture pattern and re-
connect the points in a different manner they
would look like Figure 179. If we grouped
the plotted points into a frequency distribution
they would tend to look like Figure 180.

Vi VIV
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Fig. 178. Mixture.

Fig. 180. Separate clusters of points.

Distribution associated with mixture
(obvious mixture).

Fig. 181.

Fig. 182. Distribution associated with mixture
(less obvious mixture).
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The components in a mixture may be widely
separated as in Figure 181 or close enough to
blend as in Figure 182. The wider the separa-
tion between the component distributions, the
more obvious will be the indications of mix-
ture.

When the component distributions maintain
the same relative positions and proportions
over a period of time, we call it a “Stable Mix-
ture.” When the relative positions or propor-
tions are not constant, we call it ‘“Unstable
Mixture.” Since the causes of stable and un-
stable mixtures are not the same, these two
types of mixture are listed below as separate
patterns. See pages 171-172 and 179-180.

F-15 NATURAL PATTERN

A natural pattern is one which gives no evi-
dence of unnaturalness over a long series of
plotted points. The pattern is stable; there is
no trend; there are no sudden shifts, no erratic
ups and downs, no x’s. The cause system ap-
pears to be in balance and the process is “in
control.”

Stability alone, however, is not sufficient
reason for calling the pattern natural. A strati-
fication pattern may have stability, but it
shows definite evidence of assignable causes.

The physical characteristics of a natural pat-
tern are described on page 24.

The distribution associated with a natural -

pattern is likely to be fairly smooth and uni-
modal, not extremely flat, not extremely skew.
However, a natural pattern does not neces-
sarily indicate a ‘“normal” distribution.

The following is a summary of the principal
meanings of a natural pattern:

R chart
A natural pattern on the R chart provides

Fig. 183. Natural pattern.
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direct evidence of the process uniformity. If
the chart covers an operator’s work it shows
the operator’s technique; this can be used to
compare different operators. If the chart
covers a machine dimension it shows the capa-
bility of the machine: that is, how close a
tolerance it can hold. This can be used to com-
pare different machines. It is also a direct
measure of the spread of the underlying parent
distribution. See page 56.

X chart and R chart

A natural pattern on both the X chart and
the R chart gives direct evidence of the average
of the parent distribution. It also means that
the average did not change during the charted
period and that most of the product was
actually near the indicated average. When the
X and R chart are both in control it is possible
to make reliable comparisons between the proc-
ess and the specified limits. See pages 119-
122,

p-Chart

A natural pattern on a p-chart indicates that
there is a constant fraction defective in the
product; also that the sampling is random (not
stratified).

Chart for individual measurements

A natural pattern on a chart for individual
measurements indicates that the distribution is
stable with respect to both average and spread;
also that its shape is reasonably symmetrical,
since unsymmetrical distributions tend to give
indications of unnaturalness on this type of
chart. -

VAN

Fig. 184. Distributions associated with a natural
pattern.




General

If the pattern on a control chart is in control
for considerable periods of time, it means that
we have a stable, steadily running process
which is not being disturbed by outside
causes. In a shop situation all that needs to be
done in interpreting such a chart is to compare
it with the specification limits or other author-
ized standards. In a capability study, how-
ever, this type of pattern may indicate that the
engineering problem has not yet been solved.
It is often necessary to disturb a natural pat-
tern or a process running in control in order
to bring about improvements, cost reduc-
tions, etc.

In dealing with a natural pattern, the engi-
neer should keep in mind that causes not now
identified are not necessarily unidentifiable. It
is always possible to identify more of them if we
are willing to exert the effort to do so. The-
oretically it would be possible to keep on identi-
fying and eliminating causes until all variabil-
ity would be reduced to zero.

Practically, however, the causes become
progressively more difficult to isolate or dis-
tinguish, so there is no practical possibility of
reducing the variability to zero. The causes
which are left in a so-called “natural pattern”
are so small and balanced that it requires special
effort (equivalent to setting up a new process)
to reduce these causes further.

See page 150 for a discussion of “natural” or
“non-assignable’” causes.

F-16 STABLE FORMS OF
MIXTURE

These are a special type of mixture, as ex-
plained on page 170. Stable mixtures result
from the presence of more than one distribution,
the distributions being in balance. The mix-
ture is shown by a pattern which may or may
not react to the formal tests but which indi-
cates abnormality by the absence of the usual
number of points near the center or edge of the
chart. Stable mixtures will show up plainly on
X charts, R charts, p-charts and charts for
individual measurements. See Figures 185 and
186 on page 172.

The distribution consists of more or less
widely separated components which do not
change with respect to each other in either pro-

portion or location. The samples may be
taken from each distribution separately (in
which case the mixture will show up on an X
chart or p-chart), or they may be taken from
the two distributions combined (in which case
the mixture will show up on an R chart).

There are two forms of stable mixture which
result from a special systematic way of taking
the sample: these are called “Systematic
Variable” (pages 175-176) and “Stratification”
(pages 172-174).

When mixtures are stable, the causes pro-
ducing the distributions are likely to be settled
or permanent in nature: product coming
steadily from two different sources, a difference
in machine design, a consistent difference be-
tween first and second shift. Stable mixtures
occur most frequently when measurements are
taken on the end product instead of at the early
operations. On the whole however, they are
less common than unstable mixtures.

Typical causes which may produce stable
mixtures are the following:

X Chart

Consistent differences in material, operators,
etc., where the distributions are subse-
quently mixed.

Different lots of material in storeroom.

Large quantities of piece parts mixed on the line
(in different pans or bins).

Code differences.

Differences in test sets or gages.

R Chart

Different lots of materials in storeroom.

Large quantities of piece parts mixed on the
line (in same pan or bin).

Frequent drift or jumps in automatic controls.

Difference in test sets or gages.

p-Chart

Non-random sampling technique.

Lots coming from two or more different sources.
Screening of some lots at a prior operation.
Difference in process checkers.

Difference in test sets, gages etc.

Individuals Chart

Any of the causes which can affect the X chart
or R chart.
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Very few points near the centerline.

Fig. 185. Stable mixture. See also Figures 187
and 192.

F-17 STRATIFICATION

Stratification is a form of stable mixture
which is characterized by an artificial con-
stancy. Instead of fluctuating naturally inside
the control limits, with occasional points ap-
proaching the upper and lower limits, a strati-
fication pattern appears to hug the centerline
with few deviations or excursions at any dis-
tance from the centerline. In other words,
stratification is shown by unnaturally small
fluctuations, or an absence of points near the
edge of the chart.

As shown in Figure 188 the underlying dis-
tribution is a composite, made up of small dis-
tributions which are radically different.

We sometimes describe stratification by
pointing out that the pattern is unnaturally
qutet. Do not make the mistake of thinking
that a pattern like this shows ‘“good control.”
On the contrary, it shows lack of control be-
cause distributions that were intended to be the
same are very different. The following is an
explanation of the way in which a pattern of
stratification forms.

Formation of a pattern of stratification

Stratification results when samples are taken
consistently from widely different distributions,
in such a way that one or more units in every
sample will come from each of the distributions.
The most common way of getting this effect is
to allow the person who selects the sample to
take one part from each operator in a group of
operators, or one part from each machine, or
each position on a machine, etc. Sometimes
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Fig. 186. Distribution associated with stable mixture.

people do this without realizing the possible
implications because they are anxious to make
the sample “‘representative.”

When sampling is done in this manner the
selection of units is not random, and conse-
quently the pattern will not fluctuate as in the
case of randomness. On an R chart, for ex-
ample, the level on the chart will be unnaturally
high because of the separation between the dis-
tributions. The fluctuations, however, will be
unnaturally small because the largest and
smallest units in each sample are fairly similar.
This can be seen in the following example.

Imagine five machines which are turning
out distributions very different from each
other. See Figure 188. The spread of each
individual distribution is #.001, but the
distance between the highest and lowest
distributions is nearly .005. A process
checker takes one part from each machine
in making up a sample of 5.

When the checker takes a sample in this
manner and calculates the value of R, this
value will consist mostly of the difference
between the highest and lowest machines.
Successive values of R will differ slightly
from each other, but they will all be in the
neighborhood of .005. Their pattern of
fluctuation will be entirely different from a
series of natural R values, which (if they
had an average range of approximately
.005) would fluctuate all the way from zero
to nearly .011. In Figure 188 there is no
possibility of getting a range higher than
.007 or less than .003. Consequently the



pattern will show unnaturally small fluctu-
ations as compared with a natural pattern
having the same average range.

Similar reasoning will show how such a
pattern forms on other types of chart.

By a careful study of the stratified pattern on
an R chart, it is possible to estimate how far
the distributions are separated.

Stratification on a p-chart

Stratification patterns may form on a p-
chart if there are large differences between
various containers of product and if the
samples are always selected in such a way as to
include some units from each container. An
extreme example is the following:

If one container were composed solely of
defectives and there were no defectives in
any of the other containers, and if the in-
spector took an equal number of units from
each container, all the inspector’s samples
would contain exactly the same number of
defectives. A p-chart on the inspector’s
data would show nothing but a straight line
at the average percent defective. The
stratification in this case would be so great
that it would remove all sampling fluctua-
tion.

Causes of stratification

The cause of stratification may be any ele-
ment in the process which is consistently being
spread across the samples. It will probably be
the machine if you are taking one part from each
machine. It will probably be the spindle if you

are taking one part from each spindle. It will
be the boxes of product if you are taking part
of your sample from each box. Among the
most common causes for stratification are the
following:

X Chart

Anything which is capable of causing mixture
may also produce stratification. However,
stratification shows up less readily on the X
chart than on the R chart.

Apparently stratified patterns on an X chart
are frequently the result of incorrect calcu-
lation of the control limits.

The misplacing of a decimal point may cause
an apparent effect of stratification.

R Chart
Any of the causes listed under Stable Mixture.

p-Chart
Any of the causes listed under Stable Mixture.

Individuals Chart

Since true stratification results from spread-
ing a sample across two or more distributions,
this type of pattern cannot occur on a chart
for individual measurements.

Sometimes, however, the control limits on a
chart for individuals may become inflated by

Distribution
No. 1

X -
FEBPNPNG .3 .
A LN A
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001 { )\
Change in the degree - Distribution
of stratification. No. 5

Fig. 187. Stratification.

Distribution associated with stratification.
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erratic data or mixtures. This may in certain
cases produce an effect similar to stratification.

F-18 SUDDEN SHIFT IN LEVEL

A sudden shift in level is shown by a positive
change in one direction. A number of x’s ap-
pear on one side of the chart only.

If the two periods are plotted separately in a
frequency tabulation, the underlying distribu-
tions will be separate and distinct. If the two
periods are combined, the distribution may be
wide or show separate peaks. Sudden shifts
may show up on any of the commonly used
control charts.

(1) On an X chart this type of pattern indi-
cates the sudden introduction into the
process of a new element or cause (usually
a simple or single cause) which moves the
center of the distribution to a new location
and then ceases to act on it further. The
pattern shifts up or down from the center-
line and rapidly establishes itself around
the new level.

(2) On an R chart a sudden rise in level

Fig. 189. Sudden shift in level.

Fig. 190 Distribution associated with sudden shift in
level (separate plotting).
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generally indicates the introduction of a
new distribution in addition to the dis-
tribution previously in the product. A
sudden drop in level generally indicates
that one or more distributions have been
removed.

(3) On a p-chart this type of pattern indi-
cates a major change in the distribution of
product or in the method of measuring the
product. As indicated below, the p-chart
is interpreted differently depending on
whether the change is in the high direction
or the low.

(4) On a chart for individuals a shift in level
is interpreted the same way as a similar
shift on the X chart.

A sudden shift in level is one of the easiest
patterns to interpret on any chart. Typical
causes include the following:

X Chart
(R chart must be in control.)

Change to a different kind of material.
New operator.

New inspector.

New test set.

New machine.

New machine setting.

Change in set-up or method.

R Chart

Change in motivation of operators.

New operators.

New equipment.

Change to different material or different sup-
plier of piece parts.

Distribution associated with sudden shift in
level (combined plotting).

Fig. 191.



The following causes will make the R pattern

rise:

Greater carelessness on the part of the
operators.

Inadequate maintenance.

Less expensive or less accurately designed
machines and facilities.

Positioning or holding device in need of re-
pair.

Anything which tends to make the product
less uniform.

The following causes will make the R pattern
drop:
Improved workmanship.
Machines or facilities with better capability.
Anything which tends to increase uniformity.

p-Chart

Changes in level are commonly due to:
New lot of material.
Change from one machine or operator to
another.
Change in the calibration of a test set.
Change in method.
Change in standards.

Higher level on p-chart indicates:
Worse material.
Poorer machines, tools, fixtures, piece parts
etc.
New or less adequately trained operators.
Tightening or addition of requirements.

Lower level on p-chart indicates:
Better operators.
Better machines, tools, piece parts etc.
Better methods or materials.
Loosening or removal of requirements.

Individuals Chart

Any of the causes which affect X charts, R
charts or p-charts.

F-19 SYSTEMATIC VARIABLES

One of the characteristics of a natural pattern
is that the point-to-point fluctuations are un-
systematic or unpredictable. If the pattern for
any reason becomes predictable (for example, if
a low point is always followed by a high one or
vice versa) the pattern is not natural and there
must be an assignable cause. A systematic
pattern of any kind indicates the presence of a

systematic variable in either the process or the
data. The most common appearance of such
a pattern is a regular sawtooth effect like that
in Figure 192 on page 176.

The distribution which accompanies this pat-
tern is wide and flat-topped. It may or may
not show separate peaks, depending on the dis-
tance between the high and low points.

Cyecles are one form of systematic or repeat-
ing pattern. (See pages 161-162.) Systematic
variables may originate in either the process or
the data.

Systematic variables in the process

Any of the causes listed under cycles on the
X chart may act as systematic variables if they
alternate on a regular basis. For example, day
shift always high, night shift always low.

Systematic variables in the data

These are often introduced by the way in
which the data are divided in forming samples.
For example, an engineer was testing the same
units repeatedly over a period of time in order
to study possible deterioration or drifting. Ten
such units were being tested but as a matter of
convenience he wished to plot samples of 5.
He divided the 10 units into two groups of 5
and plotted them alternately on the chart.
The result looked very much like the pattern in
Figure 192.

The systematic ups and downs in such a case
are not due primarily to process changes (which
the chart is intended to analyze) but rather to
the fact that one group of units happens to
have a higher average (or range) than the
other. The difference between groups may be
so large that it will not be possible to detect
other variation. The best way to avoid the
systematic effect is to plot two separate charts,
one for each group of units.

Among the causes for systematic variation
are the following:

X Chart

Difference between shifts.

Difference between test sets.

Difference between assembly lines where prod-
uct is sampled in rotation.

Systematic manner of dividing the data.
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Expected

spread

Fig. 192. Systematic variable.

R Chart

This effect is generally due to a systematic
manner of dividing the data.

Less frequently there may be a large difference
in spread between different conveyors, shifts,
sources of material, etc., being sampled in
rotation.

p-Chart

This effect is almost always due to drawing the
samples systematically from different sources.

Individuals Chart

Systematic variation is often due to differences
between tools, chucks, positions, assembly
fixtures, locating holes, etc.

It shows up particularly when the measure-
ments are being recorded in the order of pro-
duction, and when the above elements in
the process are contributing in succession to
the production order.

F-20 TENDENCY OF ONE CHART
TO FOLLOW ANOTHER

Part of the meaning of randomness is that the
pattern is unpredictable and never repeats.
Two control charts which are individually
fluctuating at random and which are not in any
way connected with each other in a cause and
effect relationship will have no tendency to
follow each other. Conversely, when two con-
trol charts do follow each other it indicates at
least the possibility of some relationship be-
tween them.

There are two ways in which patterns may
tend to follow each other.
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Fig. 193. Distribution associated with systematic variable.

(1) There may be a point-to-point corre-
spondence. That is, the individual points
may tend to move up and down in unison
with respect to other nearby points. See
Figure 194. If this happens regularly over
a long series of points it indicates some
relationship between them.

(2) There may be a level-to-level corre-
spondence. That is, the two patterns may
tend to show shifts in level at the same
time or to follow trends simultaneously.
See Figure 195. This may or may not be
accompanied by a point-to-point cor-
respondence also.

Point-to-point correspondence

Point~to-point correspondence generally oc-
curs when the samples plotted on the two cor-
responding patterns were the same samples.
For example, the corresponding X and R
points on the same control chart are obtained
from the same samples. It is also possible for
the points on different charts to come from the
same samples. For example, we may take a

Fig. 194. Point-to-point correlation.



sample of 5 parts and measure these parts for
several different characteristics which are then
plotted on separate control charts but represent
the same samples.

When point-to-point correspondence is ob-
served between the two patterns on the same X
and R chart (that is, when the X chart tends to
follow the R chart, point by point) this indi-
cates skewness in the underlying parent dis-
tribution. See page 156. When point-to-
point correspondence is observed between two
different characteristics on two different X and
R charts (for example, when the X points for
Power Output tend to go up or down with the
X points for a certain dimension “B”) it indi-
cates that there is probably a cause and effect
relationship between the two characteristics.
The cause and effect relationship may be a
direct one (Dimension “B”’ actually causes a
change in Power Output) or it may be indirect
through a third variable (Dimension “B” is
affected by a certain spacing and this spacing
also governs Power Output).

When two characteristics show point-to-
point correspondence on their X charts over a
considerable period of time, the indicated re-
lationship is very close. When the two R
charts in addition show point-to-point cor-
respondence, the relationship is even stronger.
If two characteristics have practically a 1-to-1
relationship (and the same samples are used for
both charts) their patterns will be almost
duplicates. X and R charts can be used in this
manner to study correlation.

Level-to-level correspondence

When a level-to-level correspondence is ob-
served between the two patterns on the same
X and R chart (that is, the X level changes at
the same time as the R level), this does not in-

Fig. 195. Level-to-level correlation.

dicate any necessary relationship. Except in
rare cases, where the standard deviation of a
characteristic happens to be proportional to
its magnitude, the X and R levels are com-
pletely independent.

When a level-to-level correspondence is ob-
served between two different characteristics
on two different control charts (whether or not
they come from the same samples) it may or
may not indicate that the two characteristics
are related. For example, many p-charts tend
to show improvement in the early stages of a
process control program. While these are un-
doubtedly tied together loosely by a common
cause—the increased emphasis on process con-
trol—there is no reason to suppose that one
characteristic causes or governs another.

While it cannot be said that a level-to-level
correspondence necessarily indicates a cause
and effect relationship, on the other hand it is
definitely true that wherever a cause and
effect relationship exists the patterns will tend
to react together. Consequently, when the en-
gineer observes the levels changing together on
various charts, he should at least check to
satisfy himself whether a relationship exists.
In making such a check he should first examine
his theoretical knowledge to see whether such a
relationship would be reasonable; remember-
ing, of course, that new knowledge comes from
the discovery of relationships which were not
suspected before. If it appears reasonable that
the two characteristics might be in fact re-
lated, the engineer should check them further,
following the methods suggested on page 56.

F-21 TRENDS

A trend is defined as continuous movement
up or down; x’s on one side of the chart fol-
lowed by x’s on the other; a long series of
points without a change of direction. Two ex-
amples of trends are shown on page 30.

When a trend is present, the total distribu-
tion is flat-topped and wider than would be
predicted by an R chart. It shifts its location
gradually in one direction over a périod of time.
Trends are in general fairly easy to identify and
associate with the process.

Trends may result from any causes which
work on the process gradually. The nature of
the cause can be determined by the type of
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Fig. 196. Trend.

chart on which the trend appears. If it appears
on the X chart, the cause is one which moves
the center of the distribution rather steadily
from high to low or vice versa. If it appears on
the R chart, it is gradually increasing or de-
creasing the spread. If it appears on a p-chart,
it is gradually increasing or decreasing the
percent defective, etc. Caution needs to be
used in the interpretation of trends because it
is very easy to think we see trends where none
really exist. The irregular up-and-down flue-
tuations in a natural pattern often appear to the
uninitiated to look like trends.

Sometimes the changes which show up as
trends on a chart are not really gradual. Sud-
den changes in the process frequently look like
trends either as a result of shop practices which
prevent a sharp cut-off or change-over, or
merely as a result of chance fluctuations in the
data. Some of the most frequent causes of
trends are the following:

X Chart
(R chart must be in control.)

Tool wear.

Wear of threads, holding devices or gages.

Deterioration of plating or etching solution.

Aging,.

Inadequate maintenance on test set.

Seasonal effects, including temperature and
humidity.

Human variables. (These may be affected by
the amount of supervisory attention, etc.)

Operator fatigue.

Increases or decreases in production schedules.

Gradual change in standards.
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Fig. 197. Distribution associated with a trend.

Gradual change in proportions of lots.

Poor maintenance or housekeeping procedures.
For example, accumulation of dirt or shav-
ings, clogging up of fixtures or holes.

Pumps becoming dirty.

Degreaser becoming exhausted.

R Chart

Increasing trend

Something loosening or wearing gradually.
Dulling of a tool.

Change in proportion of lots.

Various types of mixture.

Decreasing trend

Gradual improvement in operator technique.
Effect of better maintenance program.

Effect of process controls in other areas.

Product more homogeneous, or less affected by
mixture.

p-Chart

Trend upward.

This means the process is turning out more de-
fectives. The trend may be due to:
Introduction of poorer material.
Poorer work by operators.
Tool wearing too far.
Drift in a test set.
Tightening or addition of requirements.

Trend downward.

This means the process is turning out fewer de-
fectives. The trend may be due to:
Increasing skill or greater care on the part of
the operators.



Better material or tools for the operators to
work with.

Relaxation of requirements.

Relaxation of standards.

Individuals Chart

Anything which causes trends on the X chart,
and to a lesser extent the R chart, may affect
a chart of individuals. Indications of trends
are less reliable, however, on the chart for in-
dividuals, and should ordinarily be checked
with an X and R chart.

F-22 UNSTABLE FORMS OF
MIXTURE

These are a special type of mixture, as ex-
plained on page 170. Unstable mixtures are
one of the most common types of pattern and
also one of the most important. This type of

Iig. 198. Unstable mixtures.

mixture is caused by having several distribu-
tions in the product which are capable of shift-
ing or changing with respect to each other.
The change may be a change in location or
merely a change in proportion. For example:
one distribution may be just coming into the
process or just going out; one of the distribu-
tions may be shifting its average or spread with
respect to some of the others.

The mixture pattern appears on the X chart
when samples are taken separately -from the
different sources of product, and on the R chart
when samples are taken at random from the
different sources combined. In either case, un-
stable mixtures tend to show up quite plainly
on a p-chart or chart for individual measure-
ments.

Unstable mixtures are closely related to four
other types of pattern:

1. Instability.

2. Interaction on the R chart.
3. Grouping or bunching.

4. Freaks.

In general, the detection and elimination of
unstable mixtures will tend to make other pat-
terns easier to interpret.

Since the various forms of mixture are largely
a matter of degree, any of the unstable pat-
terns may change quite rapidly from one type
to another. For example, if freaks or wild read-
ings in the data become fairly numerous, they
will be interpreted as unstable mixture. Among
the common causes for unstable mixtures are
those listed on the following page.

Fig. 199. Distribution associated with unstable
mixture (change in proportion).

Fig. 200. Distribution associated with unstable
mixture (change in location).
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X Chart
(R chart must be in control.)

Distribution changing due to differences in ma-
terial, operators, test sets, etc.

Breakdown in facilities or automatic controls.

Overadjustment of the process.

Effect of experimental or development work.

Carelessness in setting temperature control,
timing device, ete.

Wrong sampling procedures.

Change in the method of measurement.

Errors in plotting.

Incomplete operation.

Setup parts.

R Chart

Two or more materials, machines, operators,
machine setters, test sets, gages, etc.

Too much play in a fixture.

Holding or locking devices unreliable.

Mixture of material.

Looseness of a chuck.

Maintenance schedules not adequate.

Operator in need of further training.

Operator fatigue.

Tool in need of sharpening.

Machine in need of repair.

Fixtures or holders not holding the work in
position.

Lack of alignment, etc.

Accidental damage.

Operation not completed.

Breakdown of facilities.

Unstable testing equipment.

Experimental units.

Defective piece parts.

Error in calculating or plotting.

p-Chart

Serious lack of control in the process producing
a series of lots.

Use of unreliable checking equipment or
methods.

Characteristics which tend to be “all good” or
“all bad.”

Unsystematic screening by shop prior to the
time when the product reaches the checking
point.

Variations in sample size.

Non-random sampling.
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Individuals Chart

Any of the causes capable of affecting the X
chart or R chart.

F-23 CALCULATION OF TESTS
FOR UNNATURAL
PATTERNS

Tests for unnatural patterns are obtained
by simple probability calculations as shown
below. It is necessary to know the probability
associated with the portion of the control chart
to which the test will apply. For X and R
charts, use the probabilities given in Figures
201 and 202. For other control charts, use (a)
the X and R tests or (b) special tests calculated
as on page 183.

In all cases, the standard three sigma limit
should be included as one of the tests.

Tests for X chart

In the case of an X chart, we assume that the
distribution is approximately normal. The
tests are calculated in such a way that if the
process is in control, and if the tests are ap-
plied simultaneously to one-half of the control
chart at a time (upper half or lower half), the
probability of getting a reaction to the tests will
be about .01.

The following tests can be calculated using
the probabilities in Figure 201.

(1) Consider only the outer third in the up-
per half of the chart. The probability of
getting one point at random in this area or
beyond is .0227. The probability of get-
ting two points in succession in this area
or beyond is .0227 x .0227 or .00052.

Since this is a smaller probability than
we wish to use for the test, we increase the
probability by letting the test apply to two
out of three successive points instead of
two points in succession. The probability
of “two out of three” is calculated as fol-
lows:

The probability of getting two points in
succession in the outer third of the chart or
beyond is .0227 x .0227. The probability
of getting a third point in the sequence in
some other portion of the chart (but not in
this particular outer third or beyond) is



NORMAL DISTRIBUTION
Probability = .00135
_______ - —=— 3 o Control Limit
Outer third Probability = .02135
Middle third Probability = .1360
Inner third Probability = .3413
- - Centerline
Inner third Probability = .3413
Middle third Probability = .1360
Outer third Probability = .02135
_________ 3 ¢ Control Limit
Probability = .00135
Fig. 201. Probabilities used in tests for unnatural patterns: X charts.

DISTRIBUTION OF RANGES WHEN THE PARENT POPULATION IS NORMAL

Samples of 6 Samples of 2

Probability = .0046 .0094
———————————————————————— 3 o Control Limit

Outer third Probability = .0294 .0360

Middle third Probability = L1231 .1162

Inner third Probability = 3120 .2622
Centerline

Inner third Probability = .3396 L1724

Middle third Probability = 1735 .1910

Outer third Probability = 0178 2128
________________________ 3 ¢ Control Limit

Probability = .0000 .0000

Fig. 202. Probabilities used in tests for unnatural patterns: R charts.

1 — .0227 or .9773. The probability of
getting a run of three points, two of which

is .0227 + .1360, or .1587. The probabil-
ity of getting four points in a series in this

are in this particular outer third (or be-
yond) and one of which is not, is .0227 x
.0227 x .9773 x 3 = .0015. The probabili-
ties are multiplied by 3 because the odd
point in the series—the one which does not
count in the test—might be either the first,
the middle or the last in the series.

(2) Consider now all points in the middle
third or beyond. The probability of get-
ting a single point at random in this area

area and one point in some other area is
1587 x .1587 x .1587 x .1587 x .8413 x5 =
.0027.

(3) Consider now all the points on one side

of the centerline. The probability of get-
ting one such point at random is .3413 +
.1360 + .0227, or .50. The probability of
getting eight points in succession on one
side of the centerline is .50 x .50 x .50 x .50
x .50 x .50 x .50 x .50 = .0039.

181



These three probabilities, when added to the
probability of exceeding the regular three sigma
limit, give a total of .0094, as shown on page
183.

The actual probability associated with the
combined tests is somewhat less than this total
since there is a certain probability that the
same point may react to more than one test.

All the above tests are ‘“one-sided” tests.
That is, they are calculated from the probabili-
ties on one side of the centerline only. Tests for
stratification and mixture, on the other hand,
are usually calculated from the “two-sided”
probabilities. It is possible to calculate any
desired number of tests by using the principles
illustrated above. Examples of this will be
found in Reference No. 20.

Tests for R chart

The distribution of ranges is not normal even
when the parent population is normal. It
varies according to the size of the sample from
which the range is computed. The probabilities
associated with ranges of samples of 5 and
ranges of samples of 2 are shown in Figure 202.
Note that these probabilities are quite different
from those of the normal distribution.

For ranges of samples of 5, however, it is pos-
sible to use the same tests as for a normal dis-
tribution without producing a large difference
in the total reaction to the tests. This is shown
on page 183. Note that the probability of
reaction may be quite different in the case of
individual tests, but the sum of these probabili-
ties is not far from .01.

The X tests may therefore be adopted as
“standard” tests and used not only for the X

chart but also for the R chart when the sample
size is 4 or 5. This is a practical advantage in
many routine applications of control charts,
since it is not necessary to learn more than one
set of tests.

Samples of 2

For ranges of samples of 2, the probabilities
are sufficiently different to make it advisable to
use a separate set of tests. Suitable tests are
shown in Figure 203.

If the parent population is normal, the proba-
bilities associated with the tests in Figure 203
are as follows:

Ranges of
Upper Half of Chart Samples of 2
Single point out .0094
2 successive points .0021
3 successive points .0042
7 successive points .0025
Total .0182
A Ranges of
Lower Half of Chart Samples of 2
10 successive points .0040
6 successive points .0043
4 successive points .0020
Single point out —
Total .0103

Even with the special tests, note that the
total of all tests for the upper half of the chart
approaches the .02 probability rather than .01.
This is because of the large probability of get-
ting a single point outside of the standard three
sigma limit. The latter probability itself is
nearly .01.

Ranges of samples of 2 are used mainly in
Designed Experiments, where there is no need

Upper Half
~Singlepointout
A 2 suce. points in Zone A or above
B 3 suce. points in Zone B or above
C 7 succ. points in Zone C or above

C 10 succ. points in Zone C or below
B 6 succ. points in Zone B or below
4 succ. points in Zone A or below

- Point out is not possible

Fig. 203. Tests applied to the R chart when n = 2,
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to avoid the complication of using a second set
of tests.

Tests for p-charts and various other control
charts

On most charts where control limits are
reasonably symmetrical, it is sufficiently accu-
rate to use the standard tests. However, by
making use of the principles described above, it
is possible to calculate special tests for p-charts
or other charts whose control limits may at
times be unsymmetrical. First find the proba-
bilities associated theoretically with each third
of the control band, and calculate tests which
will result in the desired total probability of
getting a reaction to the tests.

For a p-chart use either Binomial or Poisson
probabilities: for a c-chart use the Poisson, etc.

The tests in the following column are roughly
equivalent to each other when applied to areas
having the indicated probabilities, and can be
used as a general guide. The probability of re-
action to each test is approximately .0014 =
.0002.

Total Probability

Derived from
Distribution
(in a particular
2one and beyond) Suitable Test
.02 2 out of 3
.04 2 successive points
11 3 successive points
.13 4 out of 5
.20 4 successive points
.27 5 successive points
.33 6 successive points
.40 7 successive points
.44 8 successive points
.48 9 successive points
.52 10 successive points
Practical shop applications

In most cases, when doing practical work in
the shop, it is sufficient to use the tests explained
on pages 23-28. If special tests are wanted
to fit a particular situation, the tests should be
calculated and checked by the responsible
Quality Control Team.

Standard Control Chart Tests
(as given on pages 23-28)
Probability of Gelling a Reaction to the Tests
Ranges of
Upper Half of Chart Normal (X) Samples of 6
Single point out .0013 .0046
2 out of 3 .0015 .0033
4 out of 5 .0027 .0026
8 in a row .0039 .0023
Total .0094 .0128
Ranges of
Lower Half of Chart Normal (X) Samples of 6
8 in a row .0039 .0063
4 out of 5 .0027 .0054
2 out of 3 .0015 .0009
Single point out .0013 —
Total .0094 .0126
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