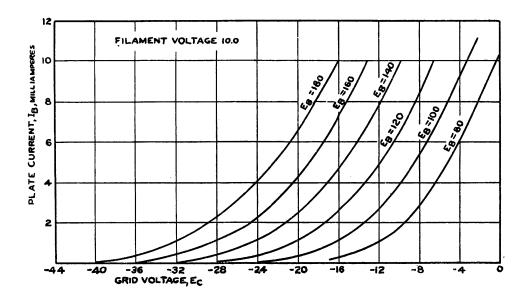

272A Vacuum Tube

Classification

The No. 272A is a general purpose Vacuum Tube having an indirectly heated cathode which permits operation of the heater element directly on alternating current. It is suitable for use as a detector or power amplifier tube in applications requiring small values of output power.

Base and Socket


The No. 272A Vacuum Tube employs a standard five-prong base suitable for use in a Western Electric No. 134A (cushion), No. 137A (rigid), or similar type socket. The arrangement of electrode connections to the base terminals is shown above.

Rating and Characteristic Data

Average Heater Current	Volts Max. 1 Milliamperes
Approximate Direct Interelectrode Capacities	
Plate to GridPlate to CathodeGrid to Cathode	2.8 MMF 2.6 MMF 3.4 MMF

Average Static Characteristics

The accompanying curves give the average static characteristics of the No. 272A Vacuum Tube.

General Features

The No. 272A Vacuum Tube is adaptable to applications in which it is desirable to have a tube of the heater cathode type with low heater current consumption.

It is suitable for use in the final stages of amplifiers requiring somewhat greater output power than that given by the No. 262A Vacuum Tube.

Western Electric

272A Vacuum Tube

Classification—Low-power triode with indirectly heated cathode

Applications

Radio-frequency antenna-coupling amplifier.

Audio-frequency amplifier where small power outputs are required.

Detector or modulator.

Dimensions—Outline diagrams showing dimensions of the tube and base, and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base-Medium, five-pin base with bayonet pin.

Socket-Standard, five-contact type, such as the Western Electric 141A socket.

Mounting Positions—The 272A tube may be mounted in any position.

Average Direct Interelectrode Capacitances

Grid to plate	$2.8~\mu\mu f.$
Grid to heater and cathode	$3.4~\mu\mu f$.
Plate to heater and cathode	$2.6 \mu \mu f$.

Heater Rating

The heater element of this tube is designed to operate on a voltage basis and should be operated at as near the rated voltage as is practicable.

Cathode Connection—When the heater is operated on alternating current, a reduction of hum in the tube may usually be obtained by connecting the cathode to a center tap on the secondary of the heater transformer or to the center point of a suitable resistance connected across the heater terminals. If voltage must be applied between the heater and cathode, it should be kept as low as possible and should never exceed 90 volts.

Characteristics—Plate current characteristics of a typical 272A tube are shown in Figure 3 as functions of grid voltage for several values of plate voltage. Corresponding amplification factor, plate resistance, and transconductance characteristics are given in Figures 4, 5 and 6, respectively. Plate current characteristics are shown as functions of plate voltage for several values of grid voltage in Figure 7.

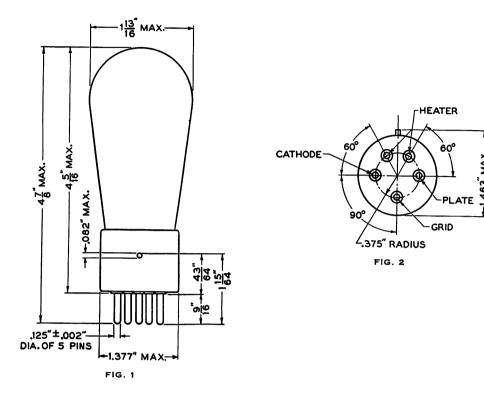
Operating Conditions and Output—Permissible operating conditions are included within the area, ABCD, in Figure 3. Amplification factor, plate resistance, transconductance, and performance data are given in the table below for a number of typical operating conditions represented by selected points within this area. The less severe operating conditions should be selected in preference to maximum operating conditions wherever possible. The life of the tube at maximum conditions may be shorter than at less severe conditions.

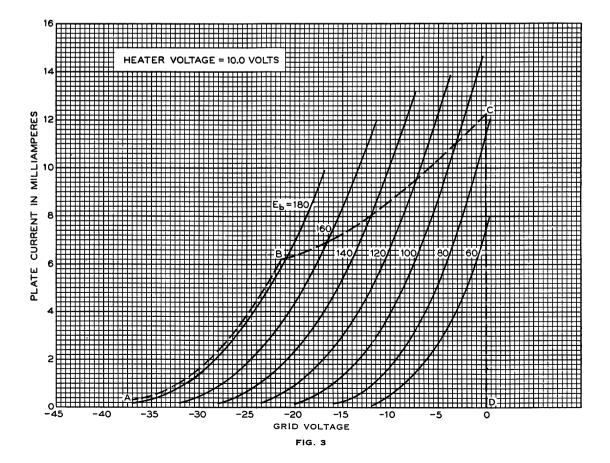
The performance data include the fundamental power output in milliwatts and the second and third harmonic levels in decibels below the fundamental for values of load resistance, R, both equal to and double the plate resistance, r_p . The peak value of the sinusoidal input, E_{gm} , which gives the indicated power output, P_m , and harmonic levels, F_{2m} and F_{3m} , in each case, is numerically equal to the grid bias. For a smaller input voltage, E_g , the output and harmonic levels, except for the lowest third harmonic levels, are given approximately by the following relations:

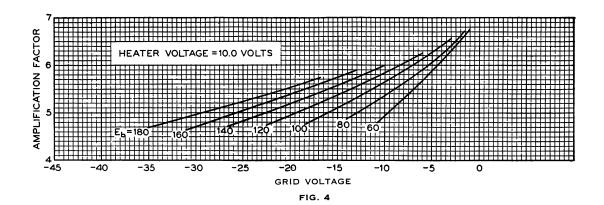
$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$

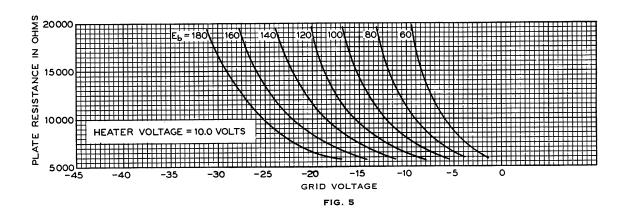
$$F_2 = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_g}$$

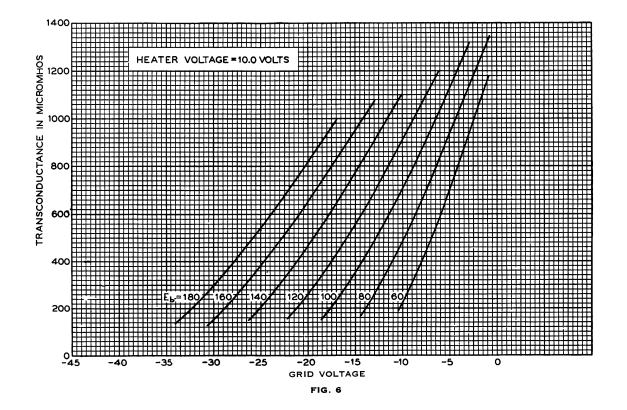
$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$

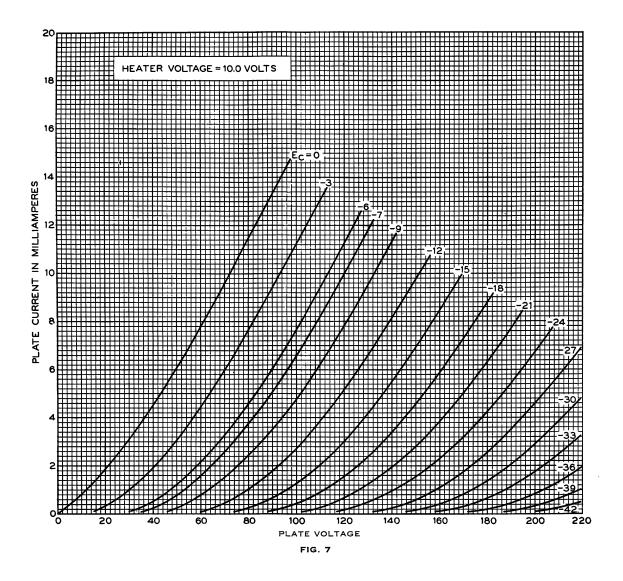

The level of the third harmonic in the 272A tube is usually low and may differ widely in individual tubes. The values given in the table are for a typical tube.


Microphonic Noise—With a plate voltage of 100 volts, a grid bias of -7 volts, and a load resistance of 100,000 ohms, the mean microphonic noise output level of the 272A tube, measured in a laboratory reference test set, is 39 decibels below 1 volt. The range of levels of individual tubes extends from 26 to 52 decibels. Since microphonic noise depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other tubes which have been tested in the same way.


TABLE


Plate Volt- age	Grid Bias	Plate Cur- rent	Amplifi- cation Factor	Plate Resis- tance	Trans- conduc- tance	Input Volt- age	Load Resis- tance	Power Out- put	Second Har- monic	Har-
Volts	Volts	Milli- amperes		Ohms r _p	Micro- mhos	Peak Volts	R	Milli- watts	db	db
80	-2	8.7	6.6	5400	1220	2	$R = r_{p}$ $R = 2r_{p}$	3.5	36 39	65 65
80	-5	5.4	6.1	6600	930	5	$R = r_{p}$ $R = 2r_{p}$	17 15	26 28	60 55
80	-8	2.9	5.6	8600	650	8	$R = r_{p}$ $R = 2r_{p}$	30 25	21 24	65 50
100	-7	6.6	6.0	6300	950	7	$R = r_{p}$ $R = 2r_{p}$	35 30	25 28	55 50
100	-11	3.3	5.5	8800	630	11	$R = r_p$	55	19	55
120	-10	6.7	5.8	6400	910	10	$R = 2r_p$ $R = r_p$	50 65	23 23	50 55
120	-14	3.7	5.5	8600	630	14	$R = 2r_p$ $R = r_p$	60 90	26 18	50 50
							$R = 2r_p$	80	22	55
140	-15	5.4	5.6	7400	760	15	$R = r_{p}$ $R = 2r_{p}$	120 110	19 23	50 50
140	-18	3.4	5.3	9400	570	18	$R = r_{p}$ $R = 2r_{p}$	130 120	17 21	42 60
160	-20	4.5	5.4	8400	650	20	$R = r_{p}$ $R = 2r_{p}$	180 160	17 21	43 65
160	-22	3.3	5.3	10000	530	22	$R = r_{p}$ $R = 2r_{p}$	180	16 20	40 55
*100	-3	11.2	6.6	5000	1320	3	$R = r_p$	9	34	65
*120	-7.5	9.2	6.1	5500	1100	7.5	$R = 2r_{p}$ $R = r_{p}$	8 45	36 26	65 60
*140	-12	8.0	5.8	6100	960	12	$R = 2r_p$ $R = r_p$	40 100	29 23	55 60
							$R = 2r_p$	90	26	50
*160	-17	6.6	5.6	6800	820	17	$R = r_{p}$ $R = 2r_{p}$	170 150	19 24	50 55
*180	-21	6.2	5.5	7200	760	21	$R = r_{\mathbf{p}}$ $R = 2r_{\mathbf{p}}$	230 210	18 22	46 60
*180	-27	2.5	5.1	11700	440	27	$R = r_{\mathbf{p}}$ $R = 2r_{\mathbf{p}}$	220 200	15 19	38 46


^{*}Maximum operating conditions.



A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

V. T. DATA SHEET 272A ISSUE 1