APPENDIX I

MKS UNITS AND DIMENSIONS

Quantity

Length
Mass
Time
Charge

Velocity
Force
Energy, work
Power

Electric potential

Electric field intensity £
Electric flux

Electric flux density D
Capacity

&, (permittivity of free space)

Electric current

Magnetic field intensity H
Magnetic flux

Magnetic flux density
Inductance

Ho(permeability of free space)

Electric resistance

Unit

Meter
Kilogram
Second
Coulomb

Meter /second
Newton

Joule

Watt

Volt

Volt /meter

Coulomb

Coulomb /square meter
Farad

Farad /meter

Ampere

Ampere /meter
Weber

Weber /square meter
Henry

Henry /meter

Ohm
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Dimensions

L
M
T

Q

LT
LMT
L*MT—
LMT-

LM T—2Q
LMT-Q
Q

LQ
L2M1T2Q?
L-‘SM—-! TZQZ

7Q

It T—IQ
nMrQt
MTQ
M
LMQ

LPMTQ*



APPENDIX II

TABLE OF PHYSICAL CONSTANTS* AND
CONVERSION BETWEEN UNITS

Permittivity of free space g = 8.854 X 10  farad /meter
Permeability of free space fo = 4w X 107 henry /meter
Velocity of light ¢ = 2.998 X 108 meters /second
Charge of the electron e =1.602 X 107 coulomb

Mass of the electron m = 9.108 X 10~  kilogram

Ratio: electron charge /electron mass  e/m = 1.759 X 10"  coulomb /kilogram
Boltzmann’s constant k= 1.380 X 102 joule /degree
Planck’s constant h = 6.625 X 107*  joule-second

Conversion Between Units

1 angstrom (A) = 107 meter
1 micron (g) = 107% meter
1 gauss = 10~* weber /square meter
1 oersted = (1/4w) X 10® amperes /meter
1 pound = 0.4536 kilogram
1 liter = 1000 cm?
1 torr = 1 mm of Hg pressure
13.595 kilograms /square meter
1 electron volt = 1.602 X 107" joule

*For adjusted best values of the physical constants as of 1955, see E. R. Cohen,
K. M. Crowe, and J. W. M. Dumond, Fundamental Constants of Physics, Interscience
Publishers, Inc., New York, 1957.
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APPENDIX III

SOME RELATIONSHIPS PERTAINING TO ELECTRIC AND MAGNETIC
FIELDS AND CURRENT FLOW

(a) Static FieLps
Electric Fields

Electric field intensity........... E E
Electric flux density. . ........... D, D
Electric potential ............... 14
Permittivity of free space........&
Relative dielectric constant. . ... .. 3
Space charge density............. P
Total charge.................... q
* D = e,E
/D~ndS=/pdv=q

closed surface volume

* VD=p

*Energy stored per unit volume = 3eg,E?

B
e [
A

E=-VV

In a regionof uniform dielectric constant
where there is no distributed charge
density:

E.dl

ViV =0

In the presence of a distributed charge
density p
vy = -2
€o
*At the interface between two dielec-
tric materials, the normal component
of D and the tangential component of
E are continuous. (It is assumed here
that there are no surface charges.)

Magnetic Fields

Magnetic field intensity. . . ...... H, H
Magnetic flux density........... B, B
Magnetic potential.............. ¥
Permeability of free space........ Mo
Relative permeability. .. ........ I
Current density vector. ......... J
Total current................... I
* B = ppH

f H.dl =1

closed path

VXH=]

* V-B=20

*Energy stored per unit volume = $uu,H?

In the absence of current-carrying con-
ductors:

B
- |
A

H=-W

In a region of uniform permeability
and in the absence of current carrying
conductors:

vy =0

H-d

*At the interface between two magnetic
materials, the normal component of B
and the tangential component of H are
continuous. (It is assumed here that
there are no surface currents flowing at

the interface.)

*These relations also apply to time-varying fields.
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(b) Time-Varvine FieLps
Maxwell’s Equations are:

o®

VX &= —2>
X & o

D
me=3+3t-
VD=p

V-® =0

Seript letters are used here to indicate that the field components are time varying.
If the field components vary with a single angular frequency w, we can set

& = ReEe*, ® = ReBe, ete.,

and
% = RejwBe’, ete.
Then
VXE= —jwB
VXH=J+ juD
VD=p
V-B=0
(¢) Currext Frow
Ohm’s Law can be written as
J=0E
or
V =1IR

where o is the conductivity of the medium, and R is the resistance between the
terminals where the voltage V is measured.
The equation of continuity can be written as
dp
V.g = —oF
at
If the current density § is time varying at a single angular frequency w, we can
set § = ReJe!. Then
V-J = —jwp



APPENDIX IV

A SUMMARY OF RELATIONS PERTAINING TO THE VELOCITY DIS-
TRIBUTION, ENERGY DISTRIBUTION, AND ANGULAR DISTRIBU-
TION OF THE ELECTRONS EMITTED FROM A THERMIONIC CATHODE

Symbols:

u, = velocity of an emitted electron in the direction normal to the emitting
surface in meters per second.

Ut = velocity of an emitted electron in the “‘transverse” direction, or
parallel to the emitting surface, in meters per second.

u = total emission velocity in meters per second.

W. = kinetic energy of an emitted electron in the direction normal to the
emitting surface in electon volts.

W: = kinetic energy of an emitted electron in the ‘“‘transverse” direction, or
parallel to the emitting surface, in electron volts.

w = total emission energy in electron volts.

k = Boltzmann’s constant.

T = absolute temperature of emitting surface in degrees Kelvin.

Wr = electron-volt equivalent of £7'.

9 = direction of emission velocity relative to the normal to the surface.

le] = a dimensionless positive constant numerically equal to the charge on
the electron.

m = mass of the electron.

Jo = total emission current density in amperes/meter?.

SoME RELATIONSHIPS BETWEEN THE ABOVE QUANTITIES:

Mi? _ mu £ _ _ mu?
Wa = 2Je[’ £ 20 o C e
kT T
WT = H = mj——electron volts.

Tue DiIsTRIBUTION FUNCTIONS:

The probability that an electron is emitted with a component of velocity normal
to the cathode surface in the range u, to u. 4+ du, is

dP(un) = e, M

The probability that an electron is emitted with a component of velocity parallel
to the cathode surface in the range u; to u. + du. is

dP(u) = %ﬂe—mu.«nﬂdu, @)

The probability that an electron is emitted with kinetic energy normal to the
cathode surface in the range W, to W, + dW, is

dP(W,) = L€‘W"’WT01W,. 3
Wr
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APPENDIX 1V 615

The probability that an electron is emitted with kinetic energy parallel to the
cathode surface in the range W, to W, 4 dW, is

dP(W) = Wl;e—W'/WTth @

The probability- that an electron is emitted with total kinetic energy in the
range W to W + dW is

7y = K —WIWTM
dP(W) = Wa n %)
The probability that the direction of the emission velocity makes an angle in
the range 6 to 8 + df with respect to the normal is
dP(6) = 2sin @ cos 0d0 (6)

The emission current density per unit solid angle at an angle § with respect to
the normal is
daP(6) cos 0
oy = 7
27 sin §d Is T ™




APPENDIX V

IN AN AXIALLY SYMMETRIC FIELD THE POTENTIAL AT OFF-AXIS
POINTS CAN BE EXPRESSED IN TERMS OF THE POTENTIAL ON THE
AXIS AND ITS DERIVATIVES

Here we consider the potential at radius r from an axis of symmetry, which will
be designated as the z axis. Laplace’s equation for an axially symmetric field is

v 10V | oW
o Trar tor =0 @

Let us suppose that the potential at radius r can be expressed as a pow;er geries in 7
of the form

Viz,r) = ao(z) + ax(2)r* + as(z)r* 4. .. 2)
where the odd powers in r are missing because of symmetry about the axis. Sub-
stituting this expression into Equation (1), we obtain for the coefficient of r~

&a,
(1 + 2ansa + 27 ®
If the right-hand side of Equation (2) is to be a solution of Equation (1), the
coefficient of r» must be zero. Hence

1 da.
“eT T @

Now @.(2) is the potential on the axis, or V(2,0). Hence ax(z) = —1V"(2,0),

a(z) = +47V""(2,0), and so on, where the primes indicate differentiation with
respect to 2. The potential V(z,r) is therefore given by

r? t
Vier) = V0) — 7V"@0) + g V"0 — ... (5)
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APPENDIX VI

SEVERAL RELATIONS BETWEEN THE OBJECT POSITION, THE IMAGE
POSITION AND THE FOCAL LENGTHS OF AN ELECTRON LENS

(a) The Relation% +£—2 =1

Figure VI-1 shows three electron trajectories r,(2), r(z), and r3(z) which pass
through a region of axially symmetric field. To the left of the lens the trajectory
r2(2) is parallel to the axis but displaced unit distance from it, whereas to the right
of the lens it passes through the focal point Fp. Similarly r,(2) passes through the
focal point F; to the left of the lens and emerges parallel to the axis and unit distance
from it to the right of the lens. The trajectory ri(z) crosses the axis u units to the
left of the first principal plane and v units to the right of the second principal plane.

REGION

OF FIELD
————— >

| UNIT
ordiice
’ ]

! ra(z) /L‘L\~ r(z) /

<, >
N

PRINCIPAL
PLANES

Fia. VI-1 Three electron trajectories which pass through a lens.

Since r1(z) and ry(2) are independent solutions of the paraxial ray equation, we

can write that
r3(2) = ari(2) + bry(2) 1

where a and b are constants. At the point where ry(z) crosses the axis to the left
of the lens,

ra(2) = 0 = an(z) + bra(e) = —a(“ ;f ‘) +b @
from which
i _a
v atb @)
At the point where r5(z) crosses the axis to the right of the lens,
roz) =0 =a— b(” — f’) )
Ja
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618 APPENDIX VI

and

fr_ 0

v a+b %)
Adding Equations (3) and (5), we obtain

LR ®

U v

Thus, if we know the focal lengths of a lens and the positions of the principal
planes, Equation (6) can be used to determine the focusing action of the lens on
any trajectory which is close to the axis and nearly parallel to the axis. In the case
of an einzel lens in which the electrodes and potentials are symmetrical about a
geometrical mid-point of the lens, fi = f; = f, and Equation (6) becomes

1 1 1
St =7 @

[,

(b) Magnification Zi: = %':7

With the aid of Figure VI-2 and geometrical considerations similar to those

REGION
OF FIELD ﬂ

fomr
~—

e S |

N2

PRINCIPAL
PLANES

Fra. VI-2 Trajectories used to determine the expression for the magnification
of a lens.

used in part (a) above, it is easily shown that the magnification of the lens, given
by hs/h, can be expressed as

=tk Al ®

1/2
(¢) The Relation% = (%)

Let us suppose that 71(z) and ry(z) are two solutions of the paraxial-ray equation,

Equation (3.1-8). Then
o V@O, V0,

W0 T avE) T

0 9)



APPENDIX VI 619

and

V'(2,0) V(0
2V(z,0) " ' 4V(z0) "
Multiplying the first equation by r, and the second by r, and subtracting, we
obtain

r' +

rd 4+ 0 (10)

V'(2,0)
2V (2,0)

(r''ry — 1''ry) +

which can be expressed as

(r're — 1) = 0 (11)

1 dr're —r'r) V(20

'ty — 1r'ry dz B —2V(z,0) (12)
Integrating both sides with respect to z, we obtain
In(r/r; — 1) = —3ln V(0 +InA (13)
and hence
r're — r'ry = A[V(2,0)]712 (14)

where A is a constant. Let us suppose that to the left of the lens ry(z) = 1, 7/(2) = 0,
and V(z,0) = Vi, and to the right of the lens r,(z) = 1, r/(2) = 0, and V(z,0) = V..
The trajectories ri(z) and ri(z) are therefore as shown in Figure VI-1. From
Equation (14), we can write that to the left of the lens

q ' = AV, (15)
an
1 v
fi= A (16)
To the right of the lens,
q —r) = AV, an
an
1 Var
o= iy (18)

Finally, combining Equations (16) and (18), we obtain



APPENDIX VII

A STEADY-STATE SOLUTION OF POISSON’S EQUATION FOR A SPACE-
CHARGE-LIMITED DIODE IS UNIQUE

The potential in the interelectrode space of a diode satisfies Poisson’s Equation,

VoV (a,,0) = —222) "

cd

We shall assume that the electrons leave the cathode surface with zero velocity.

Let us first consider the case in which the anode voltage Vo, is zero. Clearly,
V(x,y,2) = p(x,y,2) = 0 is the only possible solution in this case. If p were not
zero, electrons would be present between the electrodes, and the potential in the
interelectrode space would be depressed below cathode potential. Field lines
then would extend from induced charges on the cathode to the charge in the inter-
electrode space, and the potential gradient dV/dn at the cathode surface would be
negative. However, since the electrons leave the cathode surface with zero velocity,
all the electrons would be returned to the cathode immediately upon emission.
This contradicts our assumption that there is charge present in the interelectrode
space. Thus we must conclude that for V., = 0, p(z,y,2) = 0. Equation (1)
then reduces to Laplace’s Equation, which gives V(z,y,2) = 0 for the boundary
condition Vg, = 0.

For V., > 0 and for space-charge-limited operation, a steady-state solution to
Equation (1) must satisfy the following boundary conditions:

av
l.V-—%—O

at the cathode surface, where d/dn is the derivative in the direction normal to the
cathode surface. (Note that the assumption of zero emission velocity means that
the potential minimum coincides with the cathode.)

2. V = V,, at the anode surface.

Let us suppose that there are two independent solutions of Equation (1) which
meet these boundary conditions for V., > 0. Let the solutions be:

Vi(z,y,2), corresponding to a charge distribution py(z,y,2)
and
Va(z,y,2), corresponding to a charge distribution p.(z,y,2)

In such a case V = V; — V; would be a solution of Equation (1) which satisfies
the boundary conditions V = 0 at the anode and V = dV/dn = 0 at the cathode
and which corresponds to a charge distribution p; — p;. But from the discussion in
the previous paragraph we know that V(z,y,2) = p(z,y,2) = 0 is the only solution
to Equation (1) which meets the boundary conditions for Vi, = 0. Thus we
conclude that V, = V,, and p, = p.. Hence a steady-state solution of Poisson’s
Equation for a space-charge-limited diode is unique.
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APPENDIX VIII

IF A TWO-DIMENSIONAL POTENTIAL IN FREE SPACE IS SYMMET-
RIC ABOUT AN AXIS, THE POTENTIAL AT OFF-AXIS POINTS CAN
BE EXPRESSED IN TERMS OF THE POTENTIAL ON THE AXIS

The derivative of a complex function f(z) = f(z + jy) = u(x,y) + je(x,y) is
defined as
) = lim fz+ A2) — f(2) )
Az0 Az

where Az = Az + jAy. It can be shown that necessary and sufficient conditions
for the existence of a unique derivative of f(z) are that

ou Ov

% 5y @
and
v ou
%~ "oy ®3)

These equations are known as the Cauchy-Riemann conditions. (See, for instance,
R. V. Churchill, Introduction to Complex Variables and Applications, McGraw-Hill
Book Co., Inc., New York, 1948, p. 30.) A function f(z) = u + jv is said to be
analytic in a region of the z plane if the derivative f’(z) exists at every point in
that region. Examples of analytic functions are z, 22+ 1, e, and sin 2, where
z = ¢ + jyin each case.

If we take the partial derivative of Equation (2) with respect to z and the partial
derivative of Equation (3) with respect to y, we obtain

u_ o o @
2  dxdy axdy oy

from which

0 , u

e 4+ Ev i 0 5)
In a similar manner it can be shown that

o M

Fy + G_y" =0 6)

Hence the real and imaginary parts of an analytic function of z satisfy Laplace’s
Equation in two dimensions.
Now u(z,y) can be expressed as

u(x,y) = Reflx + jy) = Hf(x + jy) + flz — jy)] Q)

If y in this expression is replaced by —y, the value of % is unchanged, so that
u(z,y) is symmetric about the z axis. It follows, therefore, that the real part of
an analytic function f(z) defines a potential which satisfies Laplace’s Equation in
two dimensions and which is symmetric about the z axis.
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622 APPENDIX VIII

Figure VIII-1 shows two electrodes
which are assumed to extend to infin-
ity above and below the page. One is
at ground potential, the other is at a
positive potential. The coordinate axes
shown in the figure are such that the
z axis lies in the plane of symmetry of
l - o+ the electrodes. Let us suppose the poten-

TITTTUTTTTV]

tial along the z axis between the elec-
trodes is given by V = fi(xr), where
(@) = filz + Jy) = wzy) + ju(z.y) is
an analytic function. Then consider the
potential given by

w(z,y) = N + ) + filz =yl 8
Fia. VIII-1 Two electrodes which are This satisfies Laplace’s Equation in two
symmetric about an axis and which dimensions, and when y = 0, it gives
extend indefinitely above and below the correct potential along the x axis.
the page. Furthermore, it is symmetric about the
z axis.

To show that no other function us(x,y) also satisfies these conditions, and hence
that w(z,y) is in fact the potential in the interelectrode space of Figure VIII-1,

we can make use of two other results of complex variable theory. These are:

/ AUANARRRRRRRRRARINRANY

1. Any function u:(z,y) which satisfies Laplace’s Equation in two dimensions
defines a function v,(z,y) such that f(z) = us(z,y) + jvo(x,y) is analytic. (See
Churchill, p. 139.)

2. If fi(2) and f(2) are analytic throughout a region in the z plane, and if fi(z) =
fa(2) along a curve within the region, then fi(2) = fa(2) throughout the region.
(Churechill, page 189.)

It follows from (1) above that the function ws(z,y) defines an analytic function
f2(z). But fa(z) = fi(e) along the z axis, and consequently fo(z) = fi(2) at points off
the z axis, and uy(z,y) = w(z,y).



APPENDIX IX

APPROXIMATE EXPRESSIONS FOR THE ELECTROSTATIC AMPLI-
FICATION FACTOR OF A PLANAR TRIODE AND FOR THE FUNCTIONS
Fi AND F.

Here we make use of complex variable theory and that branch of complex
variable theory known as conformal mapping to derive approximate expressions
for the electrostatic amplification factor of a planar triode and for the functions
Fy and F,. First it will be helpful to discuss a few concepts relating to conformal
mapping. .

Suppose that w = u(z,y) + jv(z,y) = f(2) = f(x + jy) is an analytie function
of z. (See Appendix VIII for a definition of an analytic function.) The function
f(z) “maps” each point z, in the z-y plane into a corresponding point w, in the
u-v plane. Suppose that two curves C, and C; in the z-y plane intersect at z,, and
the tangents to these curves at z, make an angle ¥ with each other. The two
curves will map on the u-v plane into two curves C’ and Cy’ which intersect at w,.
Furthermore it can be shown that, provided f(z) is analytic at z, and provided
f'(zo) # 0, the angle between the curves Cy’ and C' at w, is alsoy. (See, for instance,
R. V. Churchill, Introduction to Complex Variables and Applications, McGraw-Hill
Book Co., Inc., New York, 1948, pp. 135 and 136.) A mapping which preserves
angles between pairs of curves in this manner is said to be conformal.

For example, the equation w(z,y) = a defines a curve in the z-y plane, and
every point on that curve maps onto a point on the straight line » = a in the u-v
plane. (See Figure IX-1.) Similarly, every point on the curve v(z,y) = b in the z-y

b : LWL

u(x,y)=a
N\

7/
/
vx,y)=b

a
X = U —

Fie. IX-1 The curves u(x,y) = a and »(z,y) = b in the z-y plane map into the
lines u = @ and v = b in the w-v plane.

plane maps onto the line v = b in the u-v plane. Suppose the two curves in the
z-y plane intersect at z,. Consider the slope of the curve u(z,y) = a at z,. Taking
the total derivative of u(z,y) = a, we obtain

du = s + Py = 0 @
oz dy
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624 APPENDIX IX

and
du
dy _ oz
o Bu 2
dy

If the partial derivatives in Equation (2) are evaluated at z,, the expression gives
the slope of the curve u(z,y) = a at z,. Similarly the slope of the curve v(z,y) = b
at 2, is given by —(dv/dz)/(dv/dy), where the partial derivatives are evaluated at
2,. By applying the Cauchy-Riemann conditions given by Equations (2) and (3)
of Appendix VIII, it is easily shown that the slope of one curve is minus the re-
ciprocal of the slope of the second eurve and hence that the two curves are orthog-
onal to each other at z,. Since the curves map into the lines ¥ = aand v = b in
the u-v plane, the mapped curves are likewise orthogonal at the point of inter-
section, and the mapping preserves the angle between the curves.

Stmilarly, a set of orthogonal curves giving the equipotential contours and the cor-
responding field lines for a particular boundary value problem in the z-y plane would
map into a second set of orthogonal curves in the u-v plane.

Suppose that V(z,y) is a solution of Laplace’s Equation in two dimensions for a
particular boundary-value problem in the z-y plane. Then

v
Fyoy + (3)
Let the potential V(z,y) be generated by applying voltages V;, Vs, . . . to electrodes
1, 2,...in the 2-y plane. The curves defining the electrodes in the z-y plane map
into corresponding curves in the u-v plane. Let us further suppose that the voltages
Vi, Vs, ... are applied to the “mapped electrodes.” Now since each point 2, in
the z-y plane defines a point w, in the u-v plane, the potential V(z,y) can be ex-
pressed as V(u,v). Furthermore V(u,5) = V; at mapped electrode 1, it equals V,
at mapped electrode 2, and so on. In addition, it is shown below that V(u,»)
satisfies Laplace’s Equation in the w-v plane, and since solutions to Laplace’s
Equation are unique, it follows that V(u,») gives the potential in the region sur-
rounding the mapped electrodes when the voltages Vi, Vs, . . . are applied to them.
Thus the equipotential contours and field lines in the z-y plane map onto cor-
responding equipotential contours and field lines in the u-v plane. This result is
useful in solving two-dimensional potential problems because it may be possible
to determine V(u,») more easily than V(z,y). However, once we know V(uy),
we can obtain V(zr,y) by a change of variables.

As a final point let us show that V(u,w) satisfies Laplace’s Equation in two
dimensions. We can write

aV adVou é)_Vav

oz  du oz ' v oz S
and
BV _ V(Y OV Ity SV SY(KY VO
dx?  du\ox Judvox 0z = Ou dx? 3z dv dz?

A similar expression can be obtained for 82V /dy2. Substituting these expressions in
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Equation (3) and making use of Equations (2), (3), (5), and (6) of Appendix VIII,

we obtain
eV - v ou\? dv\?
(5 +auT)[(a—x) +(3) ] =0 ®

Since the quantity in the rectangular brackets is generally not zero, it follows-that

vV v
P + Ewale 0 )]

Thus V (u,v) satisfies Laplace’s Equation.
Next let us see how these results can be applied to a planar triode in the absence
of space charge. Figure IX-2(a) shows a portion of the planar triode. One grid

[ G
\ \% /4|
! GRID / o0
CATHODE ANODE MAPPED ANODE
s 5 dga
- p=¢€ P
(a) (b)

Fia. IX-2 A portion of a planar triode in the z-y plane mapped onto the p-6 plane.

wire is shown with a solid ring, and the two adjacent wires are shown with broken
rings. Two lines extend from the cathode to the anode midway between the central
grid wire and the two adjacent wires. The pitch of the grid is P, so that the spacing
between the two lines is P. We shall consider only the portion of the triode between
the two lines. Clearly the amplification factor of this portion of the triode will be
the same as for the whole device.

It will be convenient to replace « + jv in the foregoing discussion by pe®®. The
transformation which enables us to solve the potential problem in the planar
triode is given by

u+jo= péia = f(z) = @™HP = @r(s+in)iP 8)

From this we see that
p=emit ®
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and
27

0= P (10)
Figure IX-2(b) shows how the triode maps onto the p-8 plane by means of this
transformation. The anode maps onto a circle e799/P, where d,, is the grid-to-anode
spacing; whereas the cathode maps onto a circle of radius €72™%o/?, where d., is
the cathode-to-grid spacing. Since &* = 256, it is evident that the radius of the
mapped anode is very large compared with unity, and the radius of the mapped
cathode is very small compared with unity. The center of the grid wire maps
onto the point p = 1, 8 = 0, and the perimeter of the grid wire maps onto a closed
curve about the point p = 1, 8§ = 0. If the radius of the grid wire is very small
compared with P, say less than P/20, the closed curve is nearly a circle and is
small in diameter. Notice that the transformation maps the point (z, y + nP),
where n is an integer, onto the same point in the p-8 plane as the point (x,y). Con-
sequently the remainder of the triode beyond the part shown in Figure IX-2(a) is
mapped on top of the mapping shown Figure IX-2(b).

Suppose the mapped cathode carries an axial charge density +r7, coulombs
per unit length in the direction normal to the page, and the mapped grid carries an
axial charge density <7, coulombs per unit length in the direction normal to the
page. We shall assume that the radii of the mapped cathode and mapped grid
are sufficiently small that these axial charge densities can be considered as line
charges. An expression for the potential resulting from a line charge T coulombs
per unit length surfounded coazially by a cylindrical conductor is obtained by
integrating Equation (1.4-5) with respect to radius r. Thus

V=V,— 2;80111 r 1

where V, is a constant that adjusts for the level of potential in the region, and r is
the radial distance from the line charge to the point where the potential is deter-
mined. The potential in the interelectrode space of Figure IX-2(b) is a super-
position of that arising from the axial charge density 7, and that arising from the
axial charge density r,. The contribution resulting from the axial charge density 7.
is given by Equation (11), where 7 becomes 7., and r becomes p. Since the radius
of the mapped anode is much greater than unity, the axial charge density 7, is
nearly coaxial with the mapped anode. Hence to a good approximation Equation
(11) also can be used to give the potential resulting from this axial charge, where
in this case radius r is measured from the point p = 1,6 = 0. Thus an approximate
expression for the potential at point A is given by

V() = C—5=lnp—Clnp
=C— " lnp—-"“1In(e*+ 1 —2cosh) 12)
27, 47re,

where p1 = (p* + 1 — 2p cos 0)V2 is the distance from the point p =1, 6§ = 0 to
point A4, and C is a constant which adjusts for the level of potential in the region.

Combining Equations (9), (10), and (12), the potential in the interelectrode
space of the planar triode can be expressed as

T T4
&P dme,

Vizy) =C In (e“"”’ + 1 — 2e*=/F cos ?I;—ry) (13)
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At the cathode x = —d,,, and the exponential terms in the argument of the log-
arithm are extremely small compared with unity. : The argument of the logarithm
is therefore nearly 1, and the potential at the cathode is approximately given by

— Tcdca
Vca = C + e01) (14)
If we assume that the cathode potential is zero, then
= Tl
¢= - as)

At the anode 2 = d,,, and the first term in the argument of the logarithm is far
larger than the second and third terms. Neglecting the second and third terms, and
substituting for C from Equation (15), the anode potential is found to be

_Tcdca + Tcdaa + Tvdﬂﬂ
&P

Examination of the equipotentials given by Equation (13) indicates that in
the neighborhood of the origin they are very nearly circles about the origin. If
the grid radius R is small compared with P, say B < P/20, the potential at (R, 0)
is therefore very mnearly equal to the potential at (0, R). Let us evaluate the
potential of the grid by setting « = 0 and y = B. Then

7.0, R

= T To in ==
Ve = P 2ﬁoln2smP 17

Vao =

(16)

where we have made use of the relationship 1 — cos 2a = 2 sin? e

Now the electrostatic amplification factor of the triode is equal to minus the
ratio of the anode voltage to grid voltage needed to give zero electric field at the
cathode. Since . = 0 when the electric field at the cathode is zero, the electrostatic
amplification factor is given by

—_ Vﬂﬂ
Hea Voo

_ 2wd,e
— . 7R
for 7o=0 Pln(2sm%)

As a final point, Equations (16) and (17) can be solved for 7. and 7, and the
resulting expressions can be substituted in Equation (13). In this way we can
express V(z,y) in the form

(18)

V(x,?/) = Vaopl + VaoF2 (19)
where
2
dey + x — (P/4mdy)(dye + doy) In (e‘"’P + 1 — 2e2%=/P ¢cos —1-ry>
F, = es 20)
' # daa + dcv + ﬂesdcp (
and

deg + 2 + (P/4md o) hesley In (e‘”/P + 1 — 2¢272/P gog 2—1ry)

F, = 21
: daa + dcv + “esdcﬂ ( )
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At z = —d.,, the argument of the logarithmic term is very nearly 1, and the
derivative of the logarithmic term is essentially zero. If these approximations are
taken into account, it is easily shown that

oF,

&

Her = FF'-;
:9; Tm—dey

(22)

Note that the origin for the coordinate system is different here than in Equation
(5.1-1).



APPENDIX X
IMPEDANCE OF A SPACE-CHARGE-LIMITED PLANAR DIODE

When a small ac signal is superim- CATHODE ANODE
posed on the dc voltage applied to a z=0 L z=d
space-charge-limited diode, the electron R ||
velocity exhibits an ac component, and
an ac induced current flows in the ex-
ternal circuit connected to the diode.
Here we derive an expression for the im-
pedance given by the ratio of the applied
ac voltage to the ac induced current in
the external circuit for the case of a
planar diode.

The planar diode is illustrated in
Figure X-1. We agsume that the virtual
cathode coincides with the actual cath- | -
ode so that, strictly speaking, our results Vao
apply only to this case. Let us gather L
together three relations which we shall F16. X-1 A space-charge-limited planar
use later in obtaining the impedance of diode.
the diode:

1. From Equations (4.1-8) and (4.1-10), the dc current density flowing between
the electrodes of the diode is given by

de, (212 Va/z 260 uo 430(2,7)1/2 V.2 )
9 22 O 9 d

where 7 = ¢/m, V is the de potential at distance z from the cathode, u, =2nV

is the de electron velocity at z, V,, is the de anode voltage, and d is the electrode

spacing.
2. The electron transit time between the electrodes in the absence of an applied

ac signal is given by
d 1
ou [l

where we have substituted from Equation (1) for u,.
3. The low-frequency ‘“‘dynamic anode resistance” for a unit area of the electrodes
is given by

Jo =

3

Note that this has the dimensions of resistance times area.
Let us proceed now with the derivation of the impedance of the diode. Since
the fields are one-dimensional, Poisson’s Equation for this problem is
oF
==t @

9z &
629
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where p is the space-charge density at the point where E is determined. The
equation of continuity, Equation (1.3-2), becomes

p(u, + u)

dp
% +==0 (5)

at
where u is the ac COhlponent of the electron velocity. Combining Equations (4)
and (5), we obtain

) O
% [p(uo + ) + sogt-] =0 (6)

This equation states that the quantity p(u, + ) + e.(0E/d¢) is independent of 2
in the region between the electrodes. The term p(u, + w) is simply the current
density resulting from the flow of charge between the electrodes. The second
term also has the dimensions of a current density and is called the displacement
current density.

To understand the displacement current den51ty better, consider a parallel-plate
capacitor in the absence of space charge. If a time-varying voltage V is applied
to it, a current ¢ = C(dV/di) = ¢, A(dE/dt) flows in the leads to the capacitor.
The quantity ¢,(dE/df) is the displacement current density. The total displace-
ment current.crossing. a surface between the. plates is equal to the conduction
current in the leads. It is a real current in the sense that it gives rise to the same
magnetic field that would be produced by a similar distribution of current in a
conductor. In the parallel-plate capacitor, the displacement current density is
uniform everywhere between the plates. However, in the space-charge-limited
diode, the electric field lines extend between charge that is in transit between the
electrodes and indueed charges on the anode. Clearly E is a function of 2 in this
case, so that the displacement current density also is a function of 2.

We shall call the quantity p(u, + u) + ¢.(0E/dt) the total current density and
denote it by J». The current flowing in the cathode and anode leads of the diode
is given by JrA, where A is the area of the electrodes. With the aid of Equation (4),
Jr can be expressed as

oE dEdz OE o
= p(uo + u) + so'ﬂ = 30(&'& + '&') (7)

The quantity in the brackets is the time rate of change of the electric field experi-
enced by a moving electron. The first term arises from the variation of E with 2
as the electron travels with velocity dz/dt toward the anode, and the second term
arises from the time variation of the field. The sum of the terms gives the total
derivative of E with respect to time. Hence

dE
J T = o= dt (8)
The acceleration of the electron is given by
d* :
= e )]

Differentiating this with respect to time and substltutmg for dE/dt from Equation
(8), we obtain

P (10)
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Equation (6) showed that Jr is independent of z. However, it is not independent
of time if the voltage applied to the electrodes is changing with time. If a small
sinusoidal voltage is superimposed on the dc voltage between the electrodes, Jr
will have a sinusoidal component and can be expressed as

Jr = —(J, + J1sin wi) (11)

where J, is the current density given by Equation (1), and J, is small compared
with J,. The minus sign implies that the current flows in the minus z direction,
or toward the cathode. Substituting in Equation (10).for Jr, we can perform suc-
cessive integrations with respect to time to obtain expressions for the acceleration,
velocity, and position of an electron with respect to time. Let the time the electron
left the cathode be £,. The boundary conditions at time ¢, are z = dz/di = d%/d2 =
0. Integrating Equation (10) from £, to ¢ then gives

Pz )y _
= so[J°(t t) w(coswt cos«pt,):l (12)

Integrating a second time gives

dz n[ (t — t.)?
= =i J—7
2

Ji, . . Jy ) _
i - (}(sm wt — sin wi,) + ‘;(t — t,) cos wto] (13)

Finally,

t — be 3 . - bo 2
i=1 J,,( ) + 'Ll‘(coswt — cos wl,) +'Ll(t — t,) sin wt, +{l(t—-t—) c0s wl,
& 6 ® _ w? @0 2
(14)

By setting z = d in the last of these equations, the time ¢ — ¢, becomes the
electron transit time 7. If we then multiply both sides of the equation by 6e.,/2J,,
the equation can be rewritten in the form 7% = T3 + & = T3(1 + 6/T.3), where
4 is a summation of terms containing J\/J, as a factor. If the ac voltage applied
between the electrodes is small compared with the de voltage, J; is small compared
with J,, and 8/T.® is small compared with unity. We can then write T = T,
(1+8/3T78) = T, + 6/3T.% Since §/3T,* is small compared with T,, we can set
t —t, =T, and t, =t — T, in the expression for §/37T.2. This is equivalent to
neglecting terms containing the product of two or more small quantities. Thus we
obtain

T=T, —‘ﬁi[coswt + T, sinw(t — T,)

Jow3 T2
2
+ ((—w;’,—") - 1) cos w(t -—'“T,,)] . (15)

As a final part of our calculations we shall integrate the electric field E from the
cathode to the anode to obtain an expression for the instantaneous voltage between
the cathode and anode. Thus

d d to=t—T ) o
1{% %,  1{" d%dz .
va——/; Edz—"—"/;—dzdtz —;ﬁ,=¢ d_tid—z.-dta ) (16)
where d%/df? is the acceleration of ah electron at distance z from the cathode at
time {, and we have substituted E = —(1/9)d%/df* from Equation (9). The
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derivative dz/dt, can be found by differentiating Equation (14) with respect to ¢,.
Thus

d_ﬁ_ = ’7 (t - to)

dt, €

We can now substitute from Equations (12) and (17) into Equation (16) and
carry out the integration. We shall neglect terms containing the product of two
or more small quantities, that is, terms containing J,* and higher powers of J..

The time T appears in the answer, and we can substitute for it from Equation (15).
Thus we obtain

(T + J sin wty) an

va =V, + oL "‘{[2(1 — coswT,) — wT, sin T} sin wt

(wT,) — 4 wT,(1 + coswT,) — 2sinwT, ] cos wt} (18)

This is of the form
v, = Vo 4+ vJ1sinwt + xJ1 cos wt 19)

where r and z are, respectively, a resistance for a unit area and a reactance for a
unit area and are given by

_ 2(1 — coswTo) — wTsinwls | _ (T,)?
r= 12ra[ @l ] = ra[l 5 + ... ] (20)
_ 1 wTo(1 + coswT,) — 2sinwT,
z = —121',,[6an + AL ]
_ 3 (wTo)?
= [IOwT" T +] (21)

and r, = $V./J, from Equation (3). The quantities /7, and z/r, are plotted in
Figure 7.1-6 as functions of wT,.

An ac induced current J,A sin wi flows in the external circuit in response to the
applied ac voltage given by Equation (19), where A is the area of the electrodes.
The diode therefore presents an impedance given by Z = (r/A) + j(z/A) to the
applied ac voltage. At low frequencies, or small wT,, this impedance reduces to

T .3
7= Z(l _ JEwT.,) 22)

In constructing an equivalent network for the device it is more useful to use the
admittance given by the reciprocal of this, or

1 A .3 ] .3,
Y= Z‘ = E(l +.7R)wTa) = Go +.7w500 (22)

where g, = A/r, = A81,,/3V., and C, = ¢,A/d is the capacitance of the parallel-
plate capacitor formed by the anode and cathode in the absence of space charge.
This equation indicates that at low frequencies the diode acts as a conductance
go = AdJ,/dV,, shunted by a capacitance equal to § times the capacitance of the
diode in the absence of space charge. A low-frequency equivalent network for
the diode is shown in Figure 7.1-8.
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LLEWELLYN-PETERSON COEFFICIENTS
Tabulated below are the coefficients in the Llewellyn-Peterson equations dis-

cussed in Section 7.2.
' 128
(’Umo + ubo) 2 ﬂl: 5(1 - F)]

172
B* = s—oﬂT[uao(P - BQ) — UpP + {(“aa + ubo)P:I

C* = _12§(uao + ubo)g
D* = 2{(“40’;1' ul;.,)P2
E* = i:[ubo — ¢ (tao + uso)le?

P g(u.w + ubo)ﬂe_ﬁ

i T Ubo
G* = —gﬂzs- 1 [ub,,(P ﬁQ) — UgoP + g-(uao + ubo)P]
— ‘l T Uao + Uso _ &
H* - €o 2 ( Ubo )(1 {) ﬁ

= 'L[uao — {(Uao + wo)le?
Upo

The following de¢ quantities and relationships pertain to these coefficients:

Uqo 80d 3, are the de electron velocities at planes a and b.

T is the electron transit time from plane ¢ to plane b in the presence of the de
space charge in the interelectrode space but in the absence of applied ac
signals.

T, is the electron transit time from plane a to plane b in the absence of space
charge and in the absence of applied ac signals. (Note that T and T, have
meanings in this appendix different from those in Appendix X.)

¢ 1is a space charge factor related to T and T, by ¢ = 3(1 — T./T).

If d is the distance from plane a to plane b, then

T
d=(1-~¢/3) (e + u!m)_z
If J, is the de current density passing through either of the planes,
€ 2
= ;(uao + ulvm)'T,2
633
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The following quantities contain the angular frequency w of the ac signal.

8 = jwT, wherej = \—1, and w is 2r times the frequency of the ac

signal.
P=1—-e'ﬁ—Be_ﬁ=§—€33 ‘8_;
s g BB
Q=1-¢~B-5+%5 =
g pg_p_ »

8=2-2F—B—fef=—f o - f

6 12 40 ' 180



APPENDIX XII
SOME USEFUL VECTOR RELATIONSHIPS

Let A be an arbitrary vector and & an arbitrary scalar in the real or phasor
notation. i, iy, etc. are unit vectors in the coordinate directions indicated by the
subscripts. The following relationships apply to A and ®. In rectangular coordi-
nates:

A=A, +i4, +i.4. ®
GA,, 94,
v. + % @)
04, 6A, . [04, 0A, .04, 0A.
VXA= "(ay 3 )+‘”( % o +"(ax ay) @
.09 00 3P
Ve = foam + iy F™ + i; % 4)
In cylindrical coordinates:
104, 04,
V'A‘ PRI TR ©
104,. 34, . f04, 04, 04 104, A
VXA= (ao w) (w m) (w rwtr) @
1 6<I> . 0P
Ve = + o ‘3 ®
z
In any coordinate system, the following two theorems are true:
Gauss’s Theorem
/A-ndS =/V~Adv 9
closed surface volume
Stoke’s Theorem

A.dl = /(V X A)-ndS (10)
closed loop surface

The following vector identities may be useful:

A X (BXC)=B(A-C) — C(A'B) (11)
V-(AXB)=B-(VXA) — A-(VXB) (12)
VA = V(V-A) = VX (V X A) (13)

635
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Equation (13) defines the Laplacian of a vector. In rectangular coordinates it is
given by

V2A = i,V24, + 1,V24, + i.V24, (14)
where
#24A, 84, , A,
24 = ez —z
Vi ox? + P o2 (15)
84, 94, 94
24, = ——¥ ¥4 Y
Vi, az ' 9y + oz (16)
2 2 2
v, - 24 24 F4 an

I T

Detailed proofs of the above relationships are given in texts on vector analysis
or advanced calculus. A good discussion is given in J. B. Hildebrand, Advanced
Calculus for Engineers, Chapter 6, Prentice-Hall, Inc., New York, 1949.



APPENDIX XIII
GROUP VELOCITY AND ENERGY FLOW

The physical significance of the group velocity can be made clearer by considering
the propagation of a pulse modulated carrier wave down a lossless transmission
line or waveguide of arbitrary length L.! This line is assumed to propagate the
energy in a single mode, which can be characterized by one branch of an w-8 diagram
of the type shown in Figure 8.5-2.

Let us suppose that some information in the form of a pulse of electromagnetic
energy is impressed into the waveguide at the input end. We can ask ourselves the
question: How much time will elapse before we can detect this pulse or information
at the output end, a distance L away?

Since all of the field components in a single mode are related by Maxwell’s
Equations, we can study the propagation of just one of them, and this
will characterize the behavior of the other components as well. Assume that this

A .
(]

4[‘~ ~

\| J_/JJ

Fig. XIII-1 A high-frequency carrier with & modulation envelope m(%).

N,

component has a time variation f(f) at the input as shown in Figure XIII-1. Asis
usual with modulation systems, the rate of change of the envelope m(t) is assumed to
be very slow compared with the frequency of the carrier. This means that a
Fourier analysis of the resultant waveform f(t) would yield frequency components
clustered closely to the carrier frequency. Thus f(f) may be written as

f® = Re m(t)eiet @

where w, is the carrier radian frequency.
The modulation envelope m(f) may be written in terms of its Fourier transform

m(t) = /_ M(p)eirdp @

1Reference 8h, pp. 81-84.
637
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Since any practical modulation system will have a finite bandwidth, this equation
can be written

(o) = /_ M@)erdp @)

This expression may be used in Equation (1), obtaining

£(t) = Re f " Mpyeertaip @)

The quantity f() is the superposition of terms of slightly different frequencies,
centered about the carrier frequency. Thus, the pulse of energy is a superposition
of waves of different frequencies, each with its own propagation constant. Each
component has a different phase shift from the input to the output. Since the
system is linear and lossless, the output is a superposition of the input frequencies,
each one shifted in phase by the proper amount. If g(f) is the time variation of the
field component at the output,

Po
g(t) = Re / M (p)ei(ﬁ’o+p)te—iﬁl.dp (5)
—po

where 8 is a function of w, + p, the frequency. Since all of the frequency com-
ponents are close to the carrier frequency, the variation of the propagation constant
with frequency may be adequately represented by the first term of a Taylor series.

B=6.+2p ®

where 8, is the propagation constant for the carrier frequency. We thus obtain
Po
g(t) = Re ef@ot—BoL) / M(p)eip[t—(aﬂlau)lep (7)
—Po

This represents a carrier modulated by a modulation envelope n(f), where

Po
n(t) = / M (p)eixw(t—(aﬁlau)lep 8)
~Po
Comparing with Equation (3), we see that
m(t) = n(t + gﬁL) )
ow

that is, the modulation envelope at the output is exactly reproduced from the input,

but at a time (88/0w)L later. This is just as if the pulse of energy had traveled

with a velocity

_ 0w

~ 3B

This is the physical significance of the group velocity.
The same relationship holds for all of the field components. Hence, if we could

visualize the electromagnetic bundle of energy, we would see it move physically
with the velocity v,.

(10)

.73
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These results may be applied to continuous wave propagation at a single
frequency. That is, we may think of a continuous wave as being a superposition of
rectangular modulated pulses placed end-to-end. It is clear that the power flow
in this case is given by

P =W, 1)

where W is the total energy stored per unit length.



APPENDIX XIV
TIME AVERAGE STORED ENERGY

The instantaneous magnetic stored energy is given by

W = o / | 3C(2) |dv
volume

The instantaneous magnetic field may be written in the phasor notation

¥(t) = ReHet
where

H=H, 4+ jH;
and H, and H; are real. Thus

¥(t) = H, coswt — H; sin wt

Equation (1) may be written

W) = %uo/ (| H, |2 cos? wt + | H; |2 sin? wt — 2H,- H; sin wt cos wt)dy
volume

The time average of this quantity is given by

anz = ‘h‘o/ [I H, I2 + IH; md’)
volume

But this is simply

Wave = %#0/|H|2dv

volume

Y

@

®

@

(5)

(6)

Now in a periodic structure, since the time average magnetic stored energy equals
the time average electric stored energy, the total time average stored energy per

cell is given by

WL = %ﬂo/lledv
unit cell

@



APPENDIX XV
KLYSTRON INTERACTION FOR A HIGH DEGREE OF BUNCHING

In the theory of klystron interaction, large values of the bunching parameter
(X > 1) result in crossings of the electron trajectories such that a given arrival
time near the bunch center corresponds to three different departure times. This
behavior is illustrated in Figure 9.1-2.

In Figure XV-1, the curve for X = 1.5 is replotted as 7, vs. 7,, where

Ta = wi, (1)
and
=w—0 (2)
That is, 7, and 7, are normalized departure and arrival times, respectively. Certain
+77
T
NI nN
Tp | T2 i Taa
Tbs
-7
-7 ) ™
Ta —>

Fiec. XV-1 Output gap arrival time in radians plotted vs. the input gap departure
time in radians for X = 1.5.

641



642 APPENDIX XV

points have been labeled on this graph which characterize the limits of the multi-
valued branches.

Assuming that the subseript 2 in Equation (9.1-19) refers to the branch with
negative slope from 7.2 to 7.3, Equation (9.1-19) may be written as

. dre, dra dr.
w0 = —Io[af—b \ dr | dm a] @)

Equation (9.1-20) for the Fourier coefficient a. becomes

I, [ ™dr,
Qp = —— — cos n7ydrs

T)_r drs

_I_«/""@_n_d;a 02| | qos nrd

T Thy dTb 1 d‘rb 2 dTb 3 08 TiTsaT
IO N a

—_ / ar, cos nTyd7s 4)
T Jn,dre

Consider the second integral term. When the variable of integration is changed,

one has:
/ The d'r
a
Th dry

Ta3 Tas
cos nrdry = — cos nmdr, = €08 NTudr, (6)
2

Tas Ta2
™ gy
a
TH1 d‘l’b

When Equations (5), (6), and (7) are added together, one obtains the simple
result:

Taz
cos nrpdrs = f cos nrdr. (5)
1

Ta1

T dr
a
T™h dTb

and

Tae

cos nrdry = / oS nTydr, )
3 T,

[:13

[ cos nrydr, 8

al

Equation (4) thus becomes simply:

I L3

p = —= / cos nrydr, 9
W

This equation is the same as the first of Equations (9.1-22) which was derived for

the case of small bunching parameter (X < 1), and hence it leads to the same

Fourier coefficients. The b, coefficients may be shown to be identical in the same

fashion.



APPENDIX XVI

A DERIVATION OF THE EXPRESSION FOR THE
THERMAL NOISE GENERATED BY A RESISTANCE

Here we derive an expression for the thermal noise generated by a resistance,
using as a basis for our derivation the random motions of the charge carriers in the

[

.

N\
\CONDUCTING
/END PLATES

s

7
/
RESISTIVE
MATERIAL

Fia. XVI-1 A cylinder of resistive material with two conducting end plates.

resistance.! Figure XVI-1 shows a view of the resistance. We shall assume that the
resistance consists of a cylinder of resistive material between two conducting end
plates. The end plates are joined by an external wire. We shall further assume
that the charge carriers within the resistance have a charge —e, a density n per
unit volume, a mobility u, and a diffusion constant D. (See Section 14.2 for a dis-
cussion of diffusion and mobility.) If a voltage v were applied across the resistance,
there would be an electric field »/L within the resistance, where L is the distance
from one end plate to the other, and a current

v v
= — == 1
) Le;mA % 1)
would flow through the resistance, where A is the area of the end plates, and R is
the magnitude of the resistance. We assume that the linear dimensions of the end
plates are sufficiently large in comparison with L that the effects of fringing fields
can be neglected. The resistance R is then given by

L

k= eunA @
If there is no applied voltage across the resistance, the motions of the charge
carriers is of a random-walk nature, sometimes called Brownian motion. (For a
discussion of Brownian motion, see E. H. Kennard, Kinetic Theory of Gases, Sections
160-164, McGraw-Hill Book Co., Inc., New York, 1938. A second informative
discussion is given by D. K. C. MacDonald, Noise and Fluctuations: An Introduction,
Section 1.2, John Wiley and Sons, Inc., New York 1962.) On a microscopic scale
the individual charge carriers travel along highly irregular paths which are char-

'This derivation follows that given by K. M. Van Vliet and J. Blok, Physica 22,
231, 1956.
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acterized by frequent abrupt changes in direction. For such motion, it can be
shown that the mean squared displacement per carrier in one coordinate direction,
say the z direction, in time ¢ is given by

Az = 2Dt. (3

A derivation of this equation is given in Kinetic Theory of Gases, Section 163.
In Figure XVI-1 let the x direction be parallel to the axis of the cylindrical
resistance. If an individual carrier with charge —e travels a distance Ar within the
resistance, where Ar has a component Az in the z direction, there is a net displace-
ment of charge
Az

Ag = A (4)
in the external circuit, where again it is assumed that the linear dimensions of the
end plates ar