Chapter 1

ELECTRONS AND FIELDS

Electron-field interactions play an essential role in the operation of all
electron tubes. Fields determine the motion of the electrons in the inter-
electrode space of a tube, and the electron motion in the interelectrode space
determines the currents that flow in the external circuit connected between
the electrodes.! It is appropriate therefore that we begin this text with a
review of the laws that govern the motion of electrons in electric and
magnetic fields, as well as some properties of the fields themselves. The
discission of fields in the present chapter will be limited to static electrie
and magnetic fields. Time-varying fields will be considered in later chapters.

In describing fields and electron-field interactions, we must rely on certain
experimental laws of physics. Several such laws from which much of our
discussion of the present chapter will develop are:

1. A particle with charge ¢ is acted on by an eleetric field E with a force
proportional to gE, the force being in the direction of the field if ¢ is positive,
and in the opposite direction if ¢ is negative.

2. When a particle with charge ¢ moves with velocity u in a magnetic
field B, it experiences a force proportional to the vector product qu X B.
The force is in the direction of u X B if the charge is positive, and in the
opposite direction if the charge is negative.

3. The electric flux crossing a closed surface surrounding a quantity of
charge is proportional to the amount of charge enclosed by the surface and
is independent of the shape of the surface. This is known as Gauss’s Law.
A point charge therefore acts as a point source of electric flux, and with
each unit of charge there is associated a certain total amount of electric flux.

4. In a static magnetic field the line integral of the magnetic field in-
tensity H around any closed path surrounding a flow of current I is propor-

1See Chapter 6.



2 PRINCIPLES OF ELECTRON TUBES

tional to the flow of current through a surface enclosed by the path. This
relationship is known as Ampere’s Circuital Law. Lines of magnetic flux
close on themselves, and there are no point sources of magnetic flux.

The constants of proportionality used in expressing the foregoing experi-
mental laws, together with the units used to measure mass, length, time,
and charge, serve to determine the units in which the electric and magnetic
field quantities are measured. Several systems of units are in use at present,
each with its own particular advantages. However, the meter-kilogram-
second system is perhaps the most widely accepted in electron-tube work,
and we shall adhere to it throughout this text. Appendix I lists the mks
units in which electric and magnetic field quantities are measured, to-
gether with their dimensions. Appendix II lists values of a number of
physical constants, and Appendix ITI presents a summary of relationships
governing static electric and magnetic field quantities.

Relativistic effects will be neglected throughout this text; that is, elec-
tron velocities will be considered small compared with the velocity of light.

1.1 Electron Motion in an Electric Field

(a) Change of Kinetic Energy and the Concept of Electric Potential

A charge of q coulombs in an electric field E volts/meter is acted on by a
force gE newtons. The foree is in the direction of the field if ¢ is a positive
charge, and in the opposite direction for a negative charge. Thus, when an
electron moves in an electric field E, it experiences a force —e¢E newtons,
where —e is the charge on the electron, ¢ being equal to 1.602 X 10~
coulomb. The resulting motion of the electron is described in rectangular
coordinates by the three equations,

2.
mZTf = —¢k,, m—‘é% = —¢E,, mzi; = —ekE, (1.1-1)
where m is the mass of the electron, and E., E,, and E, are the components
of E in the coordinate directions. If the first of these equations is multiplied
by dz on both sides, we obtain

m[(—i-@%dt)]dz - mjfd[jf] - d[ zm[ZZ'] ] - —eEdr (1.1-2)

The right-hand part of this equation states that the portion of the electron’s
kinetic energy associated with its motion in the z direction is changed by an
amount —el.dr when the electron moves a distance dz in the z direction
under the influence of the field. Similar expressions hold for motion in the y
and z directions. It follows, therefore, that if the electron moves a distance
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dl under the influence of the electric field, its net change in kinetic energy is
equal to the vector product —¢E-dl. This quantity may be positive or
negative depending on the angle between E and dl.

If the electron travels from point 4 to point B under the influence of the
electric field, its total change in kinetic energy is given by

B
change in ke. = —eL E-dl (1.1-3)
where the integral is taken over the path followed by the electron from A to
B. This expression is of much importance in determining the behavior of
charged particles in electric fields. It holds for time varying fields as well as
for static fields.

If the field is constant with time and if the work done by the field on the
electron serves only to change the kinetic energy of the electron, the field is
said to be conservative. For such a field the integral in Equation (1.1-3) is
independent of the path taken from A to B, and we can write

—ef E-dl=0 (1.1-4)

closed
path

where the integral is taken around a closed path. In this case we can ascribe
to each point in space a scalar potential such that the difference in potential
between two points is equal to the line integral of E along any path between
them. A potential difference of 1 volt exists between points A and B if the
line integral of E along any path between them is equal to 1 volt. (Potential
difference is sometimes called electromotive force or emf.)

If dl is an increment of distance in the direction of an electric field E, the
change in potential dV over the distance dl can be expressed as | dV | = Edl,
and we can write that

E=-VV (1.1-5)
where V is the scalar potential. The minus sign implies that the field is di-
rected from regions of higher potential to ones of lower potential. Equation
(1.1-5) is valid in regions in which there is space charge as well as regions
that are free of charge. From the equation, it is evident that E has the di-
mensions of volts per meter.

If an electron starts from rest and is accelerated through a potential rise
of V voalts, it acquires an amount of kinetic energy given by

ymu? = —e [ E-dl = ¢V joules (1.1-6)

Substituting the experimentally measured values for e and m in this, we
find the velocity of the electron to be

u = 5.93 X 10°\V meters/sec (1.1-7)
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A unit of energy frequently used to measure energies gained or lost by an
electron is the electron volt. It is equal to 1.602 X 107 joule and is the
kinetie energy gained by an electron when it is accelerated through a poten-
tial rise of 1 volt. If the electron travels between points differing in poten-
tial by V volts, its change in kinetic energy is V electron volts.

(b) Electron Trajectories in an Electric Field

Figure 1.1-1(a) shows two electrodes, 4 and B, of arbitrary shape. Elec-
trode A is grounded, and electrode B is held at a positive potential with
respect to ground. The path that might be followed by an electron which

(b)

Fie 1.1-1 An electron trajectory between two conducting electrodes.

starts from rest at electrode 4 and is accelerated in the direction of electrode
B is shown by-a broken line. Figure 1.1-1(b) shows a curved portion of the
path passing through point P. The electric field E acting on the electron at
point P can be resolved into two components, one parallel to the trajectory
and one transverse to it. The transverse component, Er, is responsible for
bending the path of the electron and hence must lie in the plane-of curvature
of the trajectory. If u is the velocity of the electron at point P and r is the
radius of curvature of the trajectory at that point,
mau’

- = eEr (1.1-8)

Since the electron started from rest at electrode A, its kinetic energy at
point P is given by

jmut = eV (1.1-9)
where V is the potential at point P. Combining these two equations,
we obtain

o
<

~
It

by
5

(1.1-10)
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Now V and Er are directly proportional to the voltage applied to electrode
B. Since r is equal to twice the ratio of these quantities, it follows that r is
independent of the voltage applied to electrode B. Consequently, if the
electron starts from rest, its trajectory is the same for all positive voltages
applied to electrode B.

A second point, which may seem intuitively clear, follows from similar
reasoning. When the linear dimensions in Figure 1.1-1(a) are scaled by a
constant factor, the trajectory followed by the electron is scaled by the same
factor. Let us suppose that all linear dimensions are multiplied by the
factor k and that the voltage applied to electrode B remains unchanged.
In this case the potential V at corresponding points between the electrodes
will be unchanged. The direction of the electric field intensity also will be
unchanged, but its magnitude will be 1/k times as great. From Equation
(1.1-10), it follows that » becomes k times its previous value, so that » and
the trajectory scale with the other linear dimensions.

A third conclusion we can draw from Equation (1.1-10) is that the tra-
jectory is independent of the mass or charge of the particle, provided, of
course, that the charge is finite and negative and the mass is not zero.
Hence a negative ion would follow the same path as the electron, provided
both started from rest at the same point on electrode A.

1.2 Motion in Combined Electric and Magnetic Fields

When a particle with charge ¢ coulombs moves with velocity u meters
per second in a magnetic field B webers per square meter, it experiences a
force qu X B newtons. Thus, an electron moving in a magnetic field B ex-
periences a force —eu X B newtons, and the resulting acceleration of the
electron is — (¢/m)u X B meters per second?

The vector u X B has the components B,u, — B,u, in the z direction,
B,u, — B.u, in the y direction, and B,u,. — B.u, in the z direction, where
Uz, Uy, and u, are the components of u in the coordinate directions, and B,,
B,, and B, are the components of B in the coordinate directions. If both an
electric field and a magnetic field act on an electron, the differential equa-
tions describing the motion of the electron are

&’z de
= (E +BY o B”d_t) (L.2-1)
dxy dx
M- -Ln+BE-3E) (12:2)

and

&z _ e dz dy
v i E(_E' + B,,% - B,%) (1.2-3)
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where E,, E,, and E, are the components of the electric field in the co-
ordinate directions. In cylindrical coordinates these equations become

d’r de\? al d0 dz
1df do\ _ e dr

m(’“%) = “ml 5+ Brdt B‘%] (1:2-5)
d* el d0

We shall find a number of occasions to make use of these equations in later
chapters.

Because the force resulting from the magnetic field is perpendicular to the
motion of the electron, any component of force parallel to the trajectory
must result from the electric field. However, it is the force parallel to the
trajectory which changes the elec-
tron’s kinetic energy, and conse-
quently only an electric field can
change the kinetic energy of an
electron.

If the electric field is zero and if
the velocity of the electron is per-
F1a. 1.2-1. The motion of an elcctron in fl?:d:a(l::(lz::orfonf(})lsesmi?lgn:tlgirfﬁ:;
a magnetic field when the velocity of the

electron is perpendicular to the magnetic path as .illustrated in Figul:e 1.2-1.
field. The radius R of the path is deter-

mined by the relation

2
acceleration = % = %uB 1.2-7)
or
R="% (1.2-8)
The angular frequency of the circular motion of the electron is given by
u eB
w=p=_ (1.2-9)

As a simple example of motion in combined electric and magnetic fields,
let us consider the case illustrated in Figure 1.2-2. Here, an electric field £
lies parallel to the —y direction of a rectangular coordinate system, and a
magnetic field B lies parallel to the —z direction. We shall assume that an
electron starts from the origin at time ¢ = 0 with zero velocity. The elec-
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tron is initially acted on only by the electric field, but as it advances in the y
direction and gains velocity, it is acted on by the magnetic field with a force
proportional to the product of its velocity and the magnetic flux density.

Z

Fie. 1.2-2 The trajectory of an electron which starts from rest in crossed electric
and magnetic fields.

As a result, the trajectory is bent back toward the x axis. For this problem
Equations (1.2-1), (1.2-2), and (1.2-3) reduce to the two simple equations,

@z _ epdy
e m di
(1.2-10)
Ty _ep_ epi
ae  m m dl
It is easily shown that these equations have the solutions
d¢ FE
i F(l — ¢o8 wt)
(1.2-11)
&y _ E—sin ¢
¢~ B~ °
and
z = 2ot — sina)
(1.2-12)

E
Yy = w_B(l — €08 wi)

where w = eB/m. Equations (1.2-12) are the equations of a cycloid, the
electron trajectory being as illustrated in Figure (1.2-2). Each 27/w
seconds the electron returns to the 2 axis and then repeats the curved part
of the trajectory.
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Next let us consider the scaling of electron trajectories in a region in
which there is both an electric field and a magnetic field. It is convenient to
rewrite Equation (1.1-8) to express the radius of curvature of the tra-
jectory as

mu’
F = ———————
transverse force

(1.2-13)

where the transverse force in this case may result from both an electric field
and a magnetic field. The transverse force, of course, lies in the plane of
curvature of the trajectory. Clearly, if we change the electric field intensity
and the magnetic flux density in such a manner that the right-hand side of
this equation is unchanged for all points on the trajectory, the shape of the
trajectory will not be changed. Suppose the electric field intensity at all
points is increased by the factor a? and the magnetic flux density is increased
by the factor a. Then an electron which starts from rest at the beginning of
the trajectory and travels to point P on the trajectory will have a* times as
much energy at point P, and its velocity will be a times as great. The part
of the transverse force resulting from the electric field will also be a? times
as great; and since the part of the transverse force that results from the
magnetic field is proportional to the product of u and B, this also will be in-
creased by the factor a2. Hence both the numerator and denominator of the
right-hand side of Equation (1.2-13) will be increased by the factor a?, and
the radius = will be unchanged. Thus, if we increase the electric field in-
tensity at all points in space by the factor a? and the magnetic flux density
by the factor a, the trajectory of an electron which leaves a given point in
space with zero initial velocity will remain unchanged, but the electron will
travel a times as fast. (The reader will readily verify this to be the case for
the trajectories given by Equations (1.2-12).)

By similar reasoning it is easily shown that, if the linear dimensions of the
electrodes are increased by the factor b, and if all the voltages applied to the
electrodes are increased by the factor b?%, and if the magnetic flux density at
corresponding points between the electrodes is unchanged, the electron
trajectory will also scale with the other linear dimensions of the system. In
this case the electron velocity at corresponding points of the trajectory will
be increased by the factor b.

As a final point, we should note that the motion of an electron in an elec-
tric or magnetic field is governed entirely by the forces acting on it. The
only way we can change the kinetic energy of an electron is to cause the
electron to be acted on by an electric field. Changing the potential in the
region does not in itself change the kinetic energy of the electron.

1.3 Conservation of Energy and Charge

One of the most important laws governing the behavior of physical
processes is the principle of conservation of energy. It states that energy



ELECTRONS AND FIELDS 9

can never be created or destroyed. As applied to electron tubes, it tells us
that whenever an electron gains kinetic energy, we can in principle account
for the source of kinetic energy and show that the source lost an equal
amount of energy. Similarly, when an electron loses kinetic energy, we can
in principle find an amount of energy which has appeared elsewhere in the
system equal to the lost kinetic energy.

Another significant law we learn from experimental physics is the
principle of conservation of charge. This principle states that the total
charge of a system, both positive and negative, can be changed only by
adding charge to the system or removing charge from the system. In later
chapters we shall frequently have occasion to consider volume charge
densities or “space-charge densities” arising from a large number of elec-
trons in a region of space. If p(z,y,2) is the volume charge density, the total
charge in an element of volume Av is p(z,y,2) Av. The prineiple of conserva-
tion of charge tells us that, if this quantity is changing with time, charge is
flowing across the surface of the volume element, such that the total amount
of charge both inside and outside is constant. Expressed mathematically,
the principle states that

J-ndsS = -% / o(z,9,2)dv (1.3-1)

cloged volume
surface

where J(z,y,2) is the current density associated with the flow of charge, and
n is a unit vector normal to the surface element dS and pointing outward.
Dividing both sides by Av and taking the limit as Av — 0, the left-hand side
becomes the divergence of J, and we obtain

J= -2 -
vy=-3F (1.3-2)

This is known as the equation of continuity. We shall find a number of oc-
casions to make use of it in later chapters.

1.4 Static Electric Fields — Gauss’s Law, Poisson’s and Laplace’s
Equations

(a) Gauss’s Law

In mks units the electric flux density D is related to the electric field in-
tensity E by D = e,E, where ¢ is the relative dielectric constant of the
medium, and ¢, is the permittivity of free space. The relative dielectric
constant ¢ is a dimensionless constant, which in free space has the value 1.
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The constant ¢, is approximately equal to? 8.854 X 1072 and has the di-
mensions of farads per meter or coulombs per volt per meter. Since E has
the dimensions of volts per meter, the vector D has the dimensions of cou-
lombs per square meter. (The vector D is sometimes called the displace-
ment vector.)

If we surround a quantity of charge by a closed surface, a certain total
amount of electric flux crosses the surface because of the charge inside.
Gauss’s Law states that no matter what surface we choose to surround the
charge, the total flux crossing the surface is the same. Furthermore, the
amount of flux crossing the surface is proportional to the charge enclosed.
Hence with each unit of charge there is associated a certain total amount of flux.
In mks units the flux crossing the surface is numerically equal to the charge
in coulombs enclosed by the surface. Gauss’s Law therefore can be ex-
pressed as

/ D-ndS = / e, E-ndS = ¢ (1.4-1)
closed cloged
surface surface

where n is a unit vector normal to the surface element dS, and ¢ is the charge
enclosed by the surface. If there is a distribution of charge within the
region, the theorem can be written in the form

/D-ndS = / plz,y,2)dv (1.4-2)

closed volume
surface

where p(z,y,2) is the volume charge density, and the integral on the right is
taken over the volume enclosed by the surface. Equations (1.4-1) and
(1.4-2) are valid even if the surface over which the integrals are taken
passes through a conductor or other solid matter, or if it passes through a
region of space charge. (However, if the surface element dS lies in a con-
ductor, E = 0, and the flux crossing dS is zero.)

If the volume enclosed by the surface in Equation (1.4-2) is A», and if
both sides of the equation are divided by Av, and the limit is taken as Av — 0,
we obtain

V-D=p (1.4-3)

This provides another useful expression of Gauss’s Law.

’In mks units the magnetic permeability of free space u, is defined to be equal to
47 X 1077, and the constants u, and e, are related by u.e, = 1/c?, where c is the velocity
of light. Hence ¢, can be determined by experimental measurement of the velocity of
light. It is found that ¢ = 2.996 X 10® meters/sec, so that e, = 8.854 X 10-12, or
approximately 1/(36x X 109).
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If ¢ in Equation (1.4-1) is positive, the net electric flux crossing the sur-
face is directed outward, and if ¢ is negative, the net electric flux is directed
inward. If the charge enclosed by the surface consists of two equal but op-
posite charges, the net electric flux crossing the surface is zero.

Two results that follow directly from Gauss’s Law and symmetry argu-
ments are:

1. The electric field in free space at a distance » from a point charge ¢ is
given by

= Er%——ﬂvolts/meter (1.4-4)
2. The electric field in free space outside a cylindrical charge distribution

of uniform axial charge density is given by

T
2180rvolts/meter (1.4-5)
where 7 is the axial linear charge density in coulombs per meter, and r is the

radius at which E is determined.

E=

The concept of lines of electric flux, or field lines, is useful in presenting a
picture of an electric field distribution. In the case of two equal but oppo-
site point charges, the electric field lines terminate on the two charges and
extend from one charge to the other, the lines being directed from the
positive charge to the negative charge. The total number of lines is propor-
tional to the amount of charge at the ends of the field lines. The field lines
are parallel to the direction of the electric field, and the number of lines
crossing unit area normal to the direction of the field is proportional to the
average electric flux density over the unit of area.

Static electric fields are always associated with coulomb charges —
either point charges, surface charges, volume charges, or perhaps a combina-
tion of the three. In electron-tube work a density of electrons in the inter-
electrode space of a tube can often be considered to be a volume charge
density, or “space-charge density,” even though it is really a cloud of in-
dividual point charges.

If a point charge is brought close to a conductor, currents flow in the con-
ductor until a charge distribution is built up on its surface which exactly
cancels the electric field that would otherwise be present within the con-
ductor. The surface charge is said to be an induced charge. Thus, when
electrons are present in the interelectrode space of a vacuum tube, an
amount of positive charge equal to the total charge on the electrons is in-
duced on the electrodes or other nearby surfaces, and one can imagine
electric field lines extending from the induced surface charges to the elec~
trons in the interelectrode space.
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Charges on conductors are always surface charges. A net volume charge
density within a conductor would lead to electric fields within the condue-
tor with the result that currents would flow causing neutralization of the
charge. Similarly, a statie electric field at the surface of a conductor is al-
ways normal to the surface of the conductor, since otherwise it would have a
component parallel to the surface, and charge would flow along the surface.

By a further application of Gauss’s Law, it is easily shown that the
electric field intensity E in free space at the surface of the charged con-
ductor is given by

E==2 (1.4-6)
where ¢ is the surface charge density.

Equation (1.4-6) can be used to obtain an expression for the capacitance
of a parallel-plate capacitor. When the capacitor is charged, electric field
lines extend from the surface charge on one plate to the surface charge on
the other, the charge on the plate at higher potential being positive, and
that on the plate at lower potential being negative. If the spacing between
plates is small compared with their linear dimensions so that edge effects
are negligible, the potential difference from one plate to the other can be
expressed as V = Ed = od/e, = ¢gd/e.A, where d is the spacing between
the plates, 4 is the area of a single plate, ¢ is the surface charge density,
and ¢ is the total charge on a single plate. The capacitance of the device is
defined as the ratio of ¢ to V, or

C = Tq/ = (1.4-7)

In mks units, C is measured in farads. If the space between the plates were
filled with a material of relative dielectric constant ¢, it is easily shown that
E = g/ee,, and C = ee,A/d.

(b) Poisson’s and Laplace’s Equations

Equation (1.4-3) can be written in the form
VD=V (eE) =p (1.4-8)

Now E = —VV, and in free space ¢ = 1. It follows that in a region of free
space in which there is a distributed charge density p(2,y,2), the potential V
is described by the equation

VEV) ="V = 2 (1.4-9)

€o

This relationship is known as Poisson’s Equation.
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If there is no space charge in the region, p = 0, and the potential satisfies
Laplace’s Equation,
ViV =0 (1.4-10)

As an example of a problem that can be solved with the aid of Poisson’s
Equation, let us consider the potential within a long conduecting cylindrical
tube filled with a uniform charge density p,. (We can imagine that an elec-
tron beam of uniform charge density is directed down inside the tube and
that the beam just fills the tube.) Using cylindrical coordinates, Poisson’s
Equation for this problem becomes

1dfdV\ _ p,

; E‘(TW = Y (14—11)
since there is no variation of V in the 8 or z directions. The reader will
readily verify that V = — (p,/4e,)r> + ¢1 In r + ¢ is a solution of this

equation, where ¢; and c; are constants. Evidently ¢; = 0, since V is finite
at r = 0. If the inside radius of the conducting tube is R meters, and if the
tube is at zero potential, the potential at radius r is given by V = (p,/4e,)
(R? — 72) for r < R. Positive space charge raises the potential within the
cylinder, and negative space charge lowers it.

A problem that can be solved with the aid of Laplace’s Equation is that of
finding the potential in the region between two long concentric conducting
cylinders which are held at different potentials. Since V does not change in
the 8 or z directions, Laplace’s Equation for this problem becomes

%d%(’%) =0 , (1.4-12)
This equation has the solution V = ¢; In » + ¢, where ¢; and ¢; are con-
stants. If the inner cylinder is held at potential V, and the outer cylinder is
at zero potential, and if their radii are @ meters and b meters, respectively, it
is easily shown that V = (V, In r/b)/(In a/b). A solution of Laplace’s
Equation which satisfies a particular set of boundary conditions is always
unique, and the first and second derivatives of such a solution are con-
tinuous at all points between the bounding surfaces.

Potential distributions can also be obtained by integrating known electric
field distributions along the direction of the field. In this case use is made of
the relation E = —VV. Thus, if the axial charge density on the inner cyl-
inder in the above problem were specified, we could integrate Equation
(1.4-5) with respect to r to obtain the potential as a function of r. In a
similar manner, Equation (1.4-4) can be integrated with respect to r to ob-
tain the potential due to an isolated point charge. Thus

-9
V= e +c (1.4-13)
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where ¢, is a constant, and r is the distance from the charge ¢ to the point at
which V is determined. If V is assumed to be zero at large distances from
the point charge, then ¢, = 0.

(¢) Superposition

Because Laplace’s Equation is linear, the sum of the potentials arising
from two or more point charges also satisfies it. If a region of space contains
a number of point charges as well as surface charges and volume charges,
the potential at point P can be expressed as

- dg
Vo= T (1.4-14)
where dg is a point charge or element of surface charge or volume charge,
and r is the distance from the point charge or element of charge to point P.
A problem that can be solved with the aid of Equation (1.4-14) is that of
finding the potential at point P outside a conducting sphere with uniform
charge density . We shall assume that there are no other point charges,

72474
7
/
/
2
n

~uJ
-~

F16. 1.4-1 A construction which may be used in determining the potential at a
point d meters from the center of a uniformly charged conducting sphere.

volume charges, or solid bodies nearby. With the aid of Figure 1.4-1 we can
show that

2 AN L @ = 2Rdoosh  ed  dmed (L419)
where R is the radius of the sphere, o is the surface charge density, d is the
distance from point P to the center of the sphere, and ¢ is the total charge
on the sphere.

Finally, let us note that, since the electric field at a given point is related
to the potential gradient at the point by E = —VV and since the gradient
operator is linear, the total electric field is a vector sum of contributions
arising from each of the separate point charges, and elements of surface

/ ™ 27 R? sinf do R q
V=
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charge and volume charge in the region. Hence superposition applies to
fields as well as potentials.

1.5 Static Magnetic Fields — Ampere’s Circuital Law, Permanent
Magnets

Static magnetic fields always result from charge in motion — sometimes
an electron current in a conducting medium, or a beam of charged particles,
or, in the case of permanent magnets, a preferred orientation of the electron
spins or orbits in the solid matter of which the magnets are made. Asin the
case of an electric field, it is often convenient to picture a magnetic field in
terms of magnetic flux or magnetic field lines. The lines lie parallel
to the direction of the magnetic flux density B, and the number of lines
crossing unit area normal to the direction of the field is proportional to |B|.

When current flows in a long eylindrical conductor and the direction of
flow is parallel to the axis of the conductor, the magnetic field lines are
circles concentric with the conductor and lying in a plane perpendicular to

e
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Fig. 1.5-1 Magnetic field lines associated with current flow in a wire and a loop.
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the axis. The magnetic flux density is found to be greatest at the surface of
the conductor and falls off inversely with distance from the axis at larger
distances from the axis. Figure 1.5-1 illustrates the direction of the mag-
netic field in relation to the direction of current flow. If the conductor is
bent in the form of a loop, the magnetic field lines still surround the flow of
current, and each field line threads through the loop. In all cases the field
lines close on themselves, and there are no point sources of magnetic field.
Magnetic field lines never start or stop at a point or surface as do electric
field lines.

Since the magnetic field lines close on themselves, the total magnetic flux
crossing a closed surface must be zero. The magnetic flux crossing an ele-
ment of area dS can be expressed as B-ndS, where n is a unit vector normal
to the element of area. Hence

[ B-ndS = 0 (1.5-1)

closed
surface

If the volume enclosed by the surface is very small and can be represented
by Av and if we take the limit as Av — 0, we obtain

/ BndS _opg_o (1.5-2)

Av

closed
surface
Av—0
In the mks system the unit of magnetic flux is the weber, and magnetic
flux density B is measured in webers per square meter.
For some purposes it is convenient to define a vector H, known as the
magnetic field intensity vector, such that

B = uuH (1.5-3)

where u is the relative permeability of the medium, and u, is the permeabil-
ity of free space. The relative permeability u is a dimensionless constant,
which in free space is equal to 1. In mks units the constant u, is defined to
be equal to 4r X 1077 and has the dimensions of henries per meter or webers
per ampere-meter. Since B has the dimensions of webers per square meter,
H has the dimensions of amperes per meter.

(¢) Ampere’s Circuital Law

Ampere’s Circuital Law states that the line integral of H around any
closed path which surrounds a flow of current I is equal to the flow of cur-
rent across the area enclosed by the path, or

H-dl =1 (1.5-4)
closed path
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If the closed path in this equation lies in a plane normal to a current density
J and if the area surrounded by the closed path is very small and can be
represented by AA, we can divide both sides of the equation by A4 and take
the limit as A4 — 0 to obtain

H-dl
A4

closed path
AA—0

=J (1.5-5)

or, since the left-hand side is the definition of the curl of H,
[VXH|=J
and
VXH=]

where J is a vector parallel to the flow of current and of magnitude equal to
J. Ampere’s Circuital Law applies when the closed path lies within solid
bodies, conductors, or magnetic materials, as well as in regions of free space.

Equation (1.5-4) can be used to obtain the magnetic field intensity at a
distance a from the axis of a long cylindrical conductor in free space which
conducts a current I amperes parallel to its axis. If the closed path in the
equation is a cirele of radius @ and if the cirele is normal to the axis of the
conductor with center on the axis, so that H is parallel to the path at all
points, we obtain

H2rg =1 (1.5-6)
Hence the magnetic flux density B at a distance a from the axis of a long

cylindrical conductor, which carries a current I and which is surrounded
only by free space, is given by

Iy
" 2ra

(1.5-7)

Actually the magnetic field generated by a long straight conductor is a
vector sum of contributions resulting from each element of length of the
conductor. Ampere deduced that when a current I amperes flows in an
element of length dl of a conductor, the magnetic ﬂux density dB at a point »
meters from the length dl is given by

pol(dl X r)
473

where dl is a vector of length dl and direction parallel to the current flow.
The vector r is of length r and directed away from the element dl along a
line joining dl to the point at which dB is determined. This result is known
as Ampere’s Rule. It applies only when there is no magnetie material in the

dB = (1.5-8)
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region. With the aid of Figure 1.5-2 it is easily shown that the sum of the
contributions to the net magnetic flux density at a point a meters from the
axis of a long cylindrical conductor which carries a current I amperes is
given by

x/2
_ ol cosp do _ pol y
B = /_,,2 4ra  2wa (1.5-9)

in agreement with Equation (1.5-7). Ampere’s Rule is really a special form
of the Circuital Law.
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Fia. 1.5-2 A long cylindrical conductor carrying a current I amperes.

Equation (1.5-8) ean in principle be used to determine the magnetic flux
density at any point in space resulting from a coil of any shape, if sufficient
ingenuity is used in carrying out the vector addition of the contributions dB
from each element of current flow.

Perhaps the simplest application of Equation (1.5-8) is the problem of
determining the magnetic flux density at the center of a circular loop of wire
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Fig. 1.5-3 Magnetic field lines associated with a toroidal coil which conducts a
current I amperes.
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which carries a current I and is of radius @. In this case the vectors dB at
the center of the loop resulting from each element dl of the loop are all
parallel. The total magnetic flux density at the center is easily shown to be

- ”oI

Sa (1.5-10)

and is parallel to the axis of the loop.

Figure 1.5-3 shows qualitatively the shape of the magnetic flux lines as-
sociated with a toroidal coil. If the turns are close together and regularly
spaced, it is evident from symmetry considerations that the magnetic field
lines must all lie within the toroid and that B outside the coil is essentially
zero. If there are n turns per unit length around the periphery of the coil,
application of Ampere’s Circuital Law to the path of integration shown in
the figure gives

Hl = nll
or
H=nl (1.5-11)

where [ is the length of the curved part of the path within the toroid. (The
only non-zero contribution to the line integral comes from the curved part
of the path within the toroid.) The magnetic flux density within the coil is
therefore given by B = u.nl. This is also the magnetic flux density at the
center of a long straight coil of n turns per meter.

The inductance of a coil is equal to the number of “fux linkages” per
ampere of current passed through the coil, where the number of flux
linkages is equal to the product of the number of webers linking each turn
of the coil and the number of turns in the coil. In the case of the toroidal
coil shown in Figure (1.5-3), the flux linking each turn of the coil is 7r2B =
wr*usnl, where r is the radius of the turns. If the total number of turns in
the coil is N, the number of flux linkages per ampere is m2unN , or

L = mr?%unN (1.5-12)

where L is the inductance of the coil. In the mks system inductance is
measured in henries. If the coil were filled with a medium of relative per-
meability x, the inductance would be L = wr2uunN.

(b) Permanent Magnets

A number of metals including the elements iron, nickel, and cobalt, and
certain alloys, as well as a group of ceramics called ferrites, exhibit a prop-
erty known as ferromagnetism. When a long cylindrical rod of one of
these materials is placed along the axis of a coil and a current is passed
through the coil, the magnetic flux density B within the rod is often hun-
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dreds or thousands of times that which would be obtained along the axis
of the coil in the absence of the ferromagnetic material. The ratio of the
magnetic flux density within the sample to that which would be obtained in
free space with the same value of H is known as the relative permeability
of the material and is designated by u. The magnetic flux density B with-
in the material can therefore be expressed as B = uuoH, as in Equation
(1.5-3). ,

Figure 1.5-4(a) shows a coil wound around a toroidal sample of ferro-
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F16. 1.5-4 A coil surrounding a toroidal sample of ferromagnetic material and
hysteresis loops for two ferrous alloys. Alnico V is frequently used as a permanent
magnet material, and SAE 1010 steel is often used for pole pieces.
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Fia. 1.5-5 The magnetic flux lines associated with several shapes of permanent
magnets. (a) Three toroidal magnets, two with air gaps. A small amount of flux
leakage which would take place from the sides of the two magnets with the air
gaps is not shown. (b) An ellipsoidal magnet. (¢) A hysteresis loop. (d) A cylindrical
magnet. (e) Plots of B and H along the axis of the cylindrical magnet.

magnetic material. By passing a current I through the coil, a magnetic
field intensity H = nl is established within the sample, where n is the
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number of turns per unit length around the periphery of the toroid. If
a low-frequency alternating current is passed through the coil, the magnetic
flux density® B within the material is found to lag the applied H. The
familiar “hysteresis loop” is a plot of B vs. H obtained in this manner.
Two examples of hysteresis loops are shown in Figure 1.5-4. The shape of
the hysteresis loop is characteristic of the particular ferromagnetic material.
(Notice the difference in the horizontal scale for the two hysteresis loops
shown in the figure.) Materials having hysteresis loops with large enclosed
areas make the best permanent magnet materials.

Figure 1.5-5(a) shows three toroidal rings of ferromagnetic material.
In one the ferromagnetic material forms a closed ring, in one there is a
small air gap, and in one there is a larger air gap. We shall assume that
each has been “magnetized” by winding a toroidal coil around it and
momentarily passing a large current through the coil. When the mag-
netizing current is removed, the line integral of H around any closed path
in the region must be zero, since there is no flow of current in or around the
sample. From symmetry arguments we can easily deduce that within
the closed ring, H = 0, and that B has the value indicated by point C on
the hysteresis loop. The flux lines take the form of circles concentric with
the axis of the toroid, and all are within the sample. There is no magnetic
flux outside the sample.

In the case of the sample with the small air gap, nearly all the lines of
flux cross the gap, so that B in the gap is approximately equal to B in the
solid. However, since H is parallel to the direction of B in the gap and since
the line integral of H along a path following the flux lines must be zero,
H must be in the opposite direction to B in the magnetic material. It will
be convenient to denote the values of B and H in the air gap with the sub-
seript g and the values of B and H in the magnetic material with the sub-
seript m. Then B, = B,. If H is integrated along a path followed by a
flux line which crosses the center of the gap, we obtain

SH-d =IH,+LH,=0 (1.5-13)

where [ is the length of the air gap, and L is the length of the path in the
magnetic material. Evidently H,, is small and negative and the values of
B, and H,, might be those corresponding to point D on the hysteresis loop.
Since B is positive, it follows from Equation (1.5-3) that x for the mag-
netized toroid is negative. In the case of the sample with the larger air gap,
the values of B,, and H., corresponding to point E might apply. In both
samples with the air gap there will actually be “flux leakage” outside the

sChanges in the magnetic flux density B within the sample are linearly proportional
to the time integral of the voltage generated in an auxiliary coil surrounding the sample
and can be measured in this manner.
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gap since H is not zero within the sample, and ¢ H-dl must equal zero for all
closed paths.

Figure 1.5-5(b) shows qualitatively the shape of the magnetic flux lines
associated with an ellipsoidal sample of ferromagnetic material when the
sample is magnetized parallel to the long axis of the ellipsoid. It can be
shown that, when an ellipsoidal sample is magnetized parallel to one of its
axes, the B lines within the sample are all parallel to each other and to the
axis. The values of B, and H., in this case might correspond to point F
on the hysteresis loop.

Figure 1.5-5(d) shows qualitatively the shape of the field lines associated
with a cylindrical bar magnet‘. Some of the flux lines leave the sample
through the sides in this case, with the result that B is less at the ends than
at the center. Consequently, although the values of B, and H,, at the
center of the magnet might correspond to point F on the hysteresis loop, the
values of B, and H, at the ends might correspond to point @. Figure
1.5-5(e) shows qualitatively the variation of H and B along the axis of the
bar magnet.

From the foregoing discussion it is apparent that the operating point on
the hysteresis loop is determined by the geometry of the permanent magnet.
To illustrate this point further, let us return to the two toroidal magnets
with air gaps illustrated in Figure 1.5-5(a). If it is assumed that all the
lines of B cross the gap and that there is no flux leakage from the sides of
the magnet, then

Bn = B, = u.H, (1.5-14)
Combining this with Equation (1.5-13), we obtain
Bw _ _pl
" = 7 (1.5-15)

This defines the slope of a line through the origin of the coordinate system
for the hysteresis loop, and the intersection of this line with the hysteresis
loop defines the operating point for B,, and H,,.

Since $'H-dl = 0 for all closed paths in the neighborhood of a permanent
magnet, it is possible to define a magnetic potential ¥ such ‘ohml:9 the potential

difference between points 4 and B is given by Y5 = — / H-dl. (The
4

magnetic potential difference between two points is often called the mag-
netomotive force, or mmf, in analogy to the electromotive force, or emf, in
electrostatics.) The magnetic field intensity is related to the magnetic
potential ¢ by H = —Vy. Since B = u,H in the region outside a per-

‘After M. Abraham, R. Becker, Classical Theory of Electricity and M agnetism, p. 137,
Blackie and Son, 1932.
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manent magnet, and since V-B = 0 and V- (V) = V2, the magnetic potential
in the space surrounding a permanent magnet satisfies Laplace’s Equation,
vy = 0.

Magnetic fields are used to focus, or confine, the electron beams of a
number of microwave tubes including traveling-wave tubes, klystron
amplifiers, and backward-wave oscillators. Magnetic fields also play an
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Fic. 1.5-6 A permanent magnet circuit used to focus the electron beam of a travel-

ing-wave tube. The outline of the tube is shown in the figure. A plot of the axial

magnetic field B, is shown at the right. The slight peaking of the axial magnetic

field near the ends of the circuit results from the “re-entrancies” in the pole pieces.

Within the pole pieces the axial magnetic field changes direction, and beyond the

pole pieces the axial magnetic field has the opposite direction to that which it has in
the center of the magnet.
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essential role in the operation of magnetron oscillators. By using permanent
magnets rather than electromagnets to provide the magnetic field, the total
power consumption of the tubes can be reduced.

Figure 1.5-6 shows a permanent magnet circuit for a traveling-wave tube.
The circuit produces a magnetic flux density® of nearly 0.06 weber/meter?
along the axis of the tube in the region between the pole pieces. The mag-
netic flux density B in the pole pieces is well below that needed to saturate
the pole piece material, so that H within the pole pieces is extremely small
(see hysteresis loop for SAE 1010 steel in Figure 1.5-4). The pole pieces,
therefore; serve as equipotential bodies, the mmf being nearly constant
throughout their volume. In a similar manner, the permalloy “field straight-
eners” are flat discs of high-permeability steel which serve as equipotential
planes and assure that the lines of B are parallel to the axis of the traveling-
wave tube. Since B = pu.H, and p is very large for the field-straightener
material, H within the field straighteners is correspondingly small. The
permanent magnet is larger at its center than at its ends to account for
flux leakage from its sides.
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Fia. 1.5-7 A permanent magnet circuit for a magnetron.,

50One weber per square meter = 10¢ gauss.
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Figure 1.5-7 shows a permanent magnet circuit for a magnetron. The
circuit produces a magnetic flux density of about 0.5 weber/meter? in the
neighborhood of the magnetron’s cathode. The permendur sleeves inside
the pole pieces serve to shape the magnetic field in the region between the
cathode and anode so as to obtain electron trajectories which give optimum
interaction between the electrons and the rf field.

PROBLEMS

W et
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1

Problem 1.1 -

1.1 At time ¢, a single electron is emitted from electrode A with zero velocity, and
at this time a voltage ¥V = 410 volts is applied between the electrodes in such a
direction that it accelerates the electron toward electrode B. It is assumed that the
electric field intensity is uniform at all points between the electrodes. At time #; the
electron is halfway to electrode B, and the voltage V changes discontinuously to
—90 volts and remains at that value. Which electrode does the electron strike, and
what is its kinetic energy in electron volts when it strikes the electrode?

A B C D

TIME, L

—20 L e

Problem 1.2

1.2 Grids B and C are assumed to be ideal grids having the properties that they
do not intercept electrons and that field lines do not penetrate through the grids.
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A single electron leaves electrode A with zero velocity at time #,. At this time the
voltage V is 410 volts and is in such a direction that the electron is accelerated to-
ward grid B. At time ¢, the electron is midway between grids B and C, and the volt-
age V changes to —20 volts. Which electrode (either D or A) does the electron
strike, and what is its kinetic energy in electron volts when it strikes the electrode?

R

REGION OF
MAGNETIC FIELD

Problem 1.3

1.3 A very fine wire is held stationary at one end, while the other end passes over
a pulley and is fixed to a weight which maintains a tension 7 newtons in the wire.
Over a limited region between the fixed end of the wire and the pulley there is a
magnetic field that varies across the region both in magnitude and direction. If
a current I amperes is passed through the wire, the magnetic field causes a force to
act on the wire which tends to deflect it. The force is equal to BI newtons per meter
length of the wire and acts in the direction normal to both the current flow and the
magnetic field. The resulting shape of the wire might be that shown in the figure.
Suppose that the wire were removed and that an electron were directed toward the
magnetic field along the path previously followed by the wire. Show that, if the
electron momentum mu satisfies the relation mu/e = T/I, the electron trajectory
through the region of the field will coincide with the path followed by the wire.
Assume that the stiffness of the wire can be neglected and that its mass is negligible.

T z
5
2
4 7 3
—
Y
1
Z e
Problem 1.4

1.4 Points 1, 7, and 2 lie on the z axis of a rectangular coordinate system. Points
3,7, and 4 lie on the y axis, and points 5, 7, and 6 lie on the z axis. The distance from
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point 7 to each of its neighboring points is d meters. The region is filled with a
uniform charge density p, coulombs/meter®. Show that if the distance d is very
small, the potential at point 7 is approximately given by

=V1+V2+V3+V4+V5+Ve+dﬁ13

Vi 6 6,

where V, is the potential at point 1, and so on. What effect does the presence of
space charge have on the potential at point 77

1.5 Use Equation (1.4-14) to show that the potential at the center of an isolated
spherical cloud of charge of radius B and uniform charge density p. is given by

poR? 3¢
%, S8weR

where ¢ is the total amount of charge in the cloud.

Veenter =
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Problem 1.6

1.6 Part (a) of the figure shows qualitatively the field lines associated with two
isolated point charges +¢ and —g. The plane A-A’ lies midway between the two
point charges. Since all points on the plane are equidistant from the two point
charges, the potential on the plane is zero. Both charges contribute to the electric
field intensity at the plane A-A’. Show that the total electric field intensity at the

plane can be expressed as
B
2/"-50(7-2 + y2 3/2
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where y is the distance from the point charges to the plane A-A’, and r measures
the distance along the surface of the plane from the line joining the point charges
to the point at which E is determined. The electric field intensity at the plane
A-A’ is, of course, normal to the plane.

Since all points on the plane A-A' are at zero potential, a thin planar conductor
could be inserted along the plane without disturbing the potential and field dis-
tribution in the region. Suppose such a planar conductor were inserted and the
left-hand charge were then removed. Evidently the right-hand half of the field
pattern would remain unchanged. Hence the field distribution shown in part (b)
of the figure must be that which applies when a point charge ¢ is y meters from
planar conductor. Field lines originating on the charge ¢ terminate on negative
induced charges on the surface of the conductor. Use the above expression for E to
obtain an expression for the surface charge density induced on the planar conductor
by the charge 4-g. Show that the total induced charge is equal to —q.

Show that the force tending to draw the charge +¢ toward the planar conductor
in part (b) of the figure is ¢%/[4we,(2y)%] newtons and that the work required to re-
move the charge +¢ to infinite distance from the planar conductor is ¢2/[4we.(4y)]
joules.

1.7 A dc current I amperes flows within a long cylindrical conductor of radius
E. The current density is assumed to be uniform across the wire and directed par-
allel to the axis. Sketch qualitatively how the magnetic flux density B varies with
radius r from the axis of the wire out to several times B. Make a similar sketch for
the radial electric field intensity associated with a cylindrical beam of electrons.
Assume uniform space charge density across the beam cross section.
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