Chapter 11

BACKWARD-WAVE OSCILLATORS
AND AMPLIFIERS

Let us consider the operation of the traveling-wave tube shown in Figure
11-1. This tube uses a helix as the slow-wave structure with input and out-
put connections to coaxial lines. In contrast to the forward-wave amplifier,
this tube has an rf signal impressed onto the helix at the collector end, with

INPUT
SIGNAL

ELECTRON
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Fia. 11-1 A traveling-wave tube in operation as a backward-wave amplifier. A
separate power supply connected to the anode permits beam current control
independent of the helix voltage.

the signal output at the gun end. Separate power supplies are provided for
the anode and the helix. This provides a means for adjusting the beam
current independent of the helix voltage. The beam is assumed to be con-
fined by a strong axial magnetic field.

The helix voltage V. is adjusted to a value less than that normally used
for forward-wave amplification. Assume V', corresponds to an electron
velocity w, such that a plot of ka vs. wL/u, = B.L gives the line OA
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in Figure 11-2. At the point of inter- 20
section of this line with the —1 space
harmonic, the space-harmonic phase
velocity is equal to the electron veloc-
ity, and some sort of synchronous
interaction is to be expected. Since
the group velocity for this space
harmonic is opposite to the direction
of electron travel, we would not ex- 0.5
pect the interaction to be the same <
as that described in the preceding O T <
chapter. 0 7 2

Let us consider an electron on the
outer edge of the electron beam at Fic. 11-2 Brillouin diagram for a tape
such a radius that it nearly grazes hfalix. The helix radius and pitch are
the helix. Alternatively, we could 5 by the symbols a and L, re-

X . X spectively. The slope of the line OA is

consider an electron in a thin hollow proportional to' the square root of the
beam of essentially the helix diam- helix voltage.
eter. We shall assume that the
helix is wound from a thin flat tape of metal. The electron sees rf axial
electric field due to the helix while passing the gap between adjacent
turns of the tape, and zero axial field when passing adjacent to a tape.
We may consider these gaps as points of interaction between the beam
and the helix.

The helix-beam coupled system effectively comprises a system of feedback
loops as indicated in Figure 11-3. 6, is the total phase shift around a loop

HELIX

Z ELECTRONS

Fie. 11-3 Electrons adjacent to a tape helix interacting with the fields in the helix
gaps. 0y, 6, and 6; denote loop phase shifts for one, two, and three periods,
respectively.

encompassing one period L of the helix, 8; two periods, ete., for a frequency
corresponding to the intersection of line OA with the —1 space harmonic in.
Figure 11-2. The circuit is propagating a wave to the left with a funda-
mental phase shift 3,L per period at this frequency, due to the impressed
signal. Since B.L is the phase change in the rf signal which occurs when the
beam travels a distance L, we have
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6 = ﬁeL + .BoL
82 = 2(B.L + B.L)
6; = 3(B.L + B.L), ete. (11-1)
From Figure 11-2 we observe that 8_.L and 8,L are related numerically by
8L = 21 — B,L (11-2)
Under the condition of synchronism, this must be equal to 8.L,
g.L =27 — B.L (11-3)
Introducing this expression into Equations (11-1), we obtain
6, =2«
0y = 47
6; = 6w, etc. (11-4)

The total loop phase shift for each of the feedback loops is an integral
multiple of 27 radians. Hence, the tube will oscillate provided that the
gain per feedback loop is sufficient. If the gain is not sufficient for oscilla-
tion, the tube acts as a narrow band regenerative amplifier. If the tube is
used as an oscillator, there is no need for an impressed signal at the collector
end of the helix. Oscillations are generated in the usual manner; that is, an
infinitesimal noise signal at the proper frequency builds up because of the
positive feedback until a stable operating point is reached.

If the tube of Figure 11-1 is to be used as an oscillator, the rf input signal
is replaced by a passive termination, and operation proceeds in the following
manner. The beam current is increased from zero by increasing the anode
voltage Vo, with Vs, held constant. As the beam current increases, the
gain per feedback loop also increases. Finally, a point is reached where the
tube breaks into oscillation. The de beam current corresponding to this
point is termed the starting current, Isr.

Since there are many feedback loops, it is not necessary that each one
have a loop gain equal to unity for oscillations to be produced. In fact, we
should expect the starting current to vary inversely with the number of
feedback loops or the length of the helix. We shall find that oscillations are
produced when the product of the gain per wavelength along the helix times
the number of circuit wavelengths exceeds some critical value. In terms of
the traveling-wave tube parameters introduced in the preceding chapter,
this produet is proportional to CN.

A traveling-wave tube operated in this manner is known as a backward-
wave oscillator. The rf output power is taken from the electron gun end
of the helix. In external physical appearance it is very similar to a traveling-
wave amplifier; the helix is usually shorter and larger in diameter, and there
is no circuit sever or loss pattern.
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The frequency of oscillation is tuned electronically by varying the helix
voltage. This is easily seen by referring to Figure 11-2. Changing the beam
voltage changes the frequency corresponding to the intersection of the line
OA with the —1 space harmonic. Extremely wide electronic tuning ranges
are obtainable; typically, the ratio of the highest to the lowest frequency is
two to one.

With the beam current adjusted to a value below the starting current, the
tube is usable as a backward-wave amplifier. RF power introduced at the
collector end of the helix is amplified and delivered out the gun end. Be-
cause of the regenerative nature of the amplification process, extremely
narrow fractional bandwidths are obtained, of the order of 0.5 per cent. The
frequency of amplification is tuned electronically by varying the helix
voltage. In systems requiring a highly selective, electronically tunable
amplifier the backward-wave amplifier is unexcelled.

In the following sections we shall examine the quantitative aspects of
these devices. Both oscillation and amplification modes of behavior are
derived from the same basic theory, which is closely related to the theory
of the preceding chapter.

11.1 Theory of Backward-Wave Interaction

The theory of backward-wave interaction closely parallels that given for
the traveling-wave amplifier in Section 10.1. An electronic equation and a
circuit equation are derived individually and then solved simultaneously to
determine allowed values for the “hot”’ propagation constants.

(@) The Electronic Equation

This equation expresses the electron motion induced by a space harmonie
of the circuit field traveling synchronously with the electrons. It is given by
Equation (10.1-18) for backward waves as well as for forward waves. It
should be clear that synchronism refers to the equality of the electron
velocity and the space-harmonic phase velocity; no condition is placed on
the space-harmonic group velocity.

() The Circuit Equation

This equation expresses the manner in which currents are induced into
the slow-wave structure by the beam convection currents and the way in
which these induced currents propagate and combine.

This equation is derived with reference to Figure 10.1-1. In the case of
backward-wave interaction, the arrows above the circuit refer to the
direction of the group velocity, the direction of energy propagation, for each
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of the waves shown. In the traveling-wave amplifier there was no ambiguity
since the phase and group velocities were in the same direction. The con-
vection current segment in the beam induces power into the circuit, giving
rise to incremental waves having group velocities directed away from the
point of induction. .

With this interpretation in mind, the development of Section 10.1(b)
follows exactly for backward-wave interaction up to and including Equation
(10.1-27). We shall proceed with the development from this point.

Let Ty = —a + jB. be the complex cold circuit propagation constant for
a synchronous backward-wave space harmonic with positive phase velocity
and negative group velocity. The —1 space harmonic shown in Figure 11-2
is of this type. Such a wave has a z dependence of the form

E_P“’ — eaze_iﬁnz (11.1-1)

with a and 8, both positive. We note that the wave amplitude is attenuated
in the minus z direction corresponding to the direction of power flow.

In order to include the possibility of a backward-wave amplifier we assume
that energy is introduced onto the circuit from an external signal source at
the collector end. The total space-harmonic field at an arbitrary point
(z = a) on the circuit is then given by the superposition of three contribu-
tions as follows:

A. The power coming from the external source at the collector end of the
circuit (z = 1),

EznA(a)- = Eznofroa_a) (11.1-2)
where E.,, is the value of the space harmonic at z = [ corresponding to this
power.

B. The superposition of the incremental waves dE, ... arriving at z = a
from the left are given by

E..5(a) =/; elo@adE, .. (11.1-3)

C. The superposition of the incremental waves dE,,_ arriving at z = «
from the right are given by

11
Ean(a) = / EFO(z_a)dEzn— (11.1-4)

In all cases we note that the waves advance in phase and decay in ampli-
tude from the point of origin, characteristic of backward waves.
The total field at z = a is obtained by summing the above three contribu-
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tions and making use of Equation (10.1-27):

[ [
E..(a) = E.poe™™® — %ﬁ,ﬁK n f 1elo@™adz — %ﬁ,ﬂK,. / tefoGema) gz
] a
(11.1-5)

where 7 is the ac convection current in the electron beam. The variable
of integration is replaced by 7, and a is replaced by 2z, a variable point,
obtaining

E.u(2) = Epnoe Tole™d — %anK,,/ i(r)eloedr
0

l
- %ﬁrﬁKn-/‘ i(r)e T ndr  (11.1-6)
This equation can be differentiated twice to obtain

E,, = T 2E, e Teeh — %I‘fﬂnan / 1(r)efo= Idr
0

1
— %I‘.,"’B,?K,./ i(r)e T ndr — T,8,2K,i (11.1-7)

where it has been assumed that the resultant space harmonic has a “hot” z
dependence of the form

G—I‘z

The last two equations are combined to yield the circust equation for back-
ward-wave interaction:

T —~TMHDE,, = —TB.2K.i (11.1-8)
This differs from the corresponding forward-wave amplifier equation,
Equation (10.1-34), only in the sign of the term containing the impedance.

(¢) Solutions for Cumulative Interaction

Allowed values of the “hot” propagation constant I' are determined from
a simultaneous solution of the electronic and circuit equations. One obtains

. q2 ] 7L2I‘ ”IO
(- 1‘02)[(1‘ - g + 5] = LI

This equation is simplified by intreducing certain parameters. C and QC
are defined as in Equations (10.1-36) and (10.1-37). b and d are defined by

T, = jB.(1 4 Cb + jCd) (11.1-10)
and § is defined by Equation (10.1-39). Equations (10.1-40) and (10.1-41)

(11.1-9)
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are correct as written for backward-wave interaction. Equation (11.1-9)
simplifies to

_ 1
Ry

Equation (11.1-11) determines three allowed values for the “hot”
propagation constant in terms of the various operating parameters of the
tube. The various fields and beam quantities may thus be written as a
superposition of three waves, as in Equations (10.1-53). The boundary
conditions at z = 0 for these various quantities are the same as in the
forward-wave amplifier, as indicated in Equations (10.1-60). It should be
noted that E..(0) corresponds to the rf output power for backward-wave
interaction, and we have not so far determined its value explicitly. None-
theless, we can solve Equation (10.1-60) to determine the values of E.r,
E.rs, and E,rs in terms of E..(0). Thus, we obtain Equation (10.1-61) and
similar expressions for E.r» and E.r; by permuting the subseripts.

It will be most convenient to write all of our equations in terms of the
waves corresponding to the space-harmonic field due to the circuit. Com-
bining Equations (10.1-61) and (10.1-73), we obtain

E. _ & 44QC
E..(0) (8 — 6)(51 — &)
with expressions for E..; and E..s obtained by permuting subscripts. The
total space-harmonic field at any axial position is given by
E.n(2) = Bome ™ + Eopae™ + Eppge™ (11.1-13)
Using Equation (11.1-12) and similar expressions for E... and E..; we
obtain at z = I:

E.() _ &' +4QC
E..0) (01— 8)(6 — &)

8* 4QC (11.1-11)

(11.1-12)

5 4QC .,
(62 — 85) (32 — 61)

8+ 4QC
(8 — 81)(8s — &)

The definitions given by Equations (10.1-39) and (10.1-70) are substituted
into this equation, obtaining

E..() TN — & + 4QC 2wd

E..(0) (1 — 8)(6 — &)

-T1l +

+ (11.1-14)

M_ezmw
(82 — 83)(32 — &)
82 + 4QC
(85 — 61)(8s — 82)

The gain of a backward-wave amplifier is given by
E.,.(0)
E..()

1CN +

+ émCN  (11.1-15)

gain = 20 log

ldb (11.1-16)
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which may be calculated directly from Equation (11.1-15). The gain is seen
to be a function of QC and CN directly and of b, d, and QC indirectly, since
the latter quantities determine the values of the 8’s. We shall further con-
sider the backward-wave amplifier in a later section.

As the value of the right-hand side of Equation (11.1-15) approaches
zero, the backward-wave amplifier gain approaches infinity. At this point
the tube will oscillate, since a finite value of E.,,(0) is obtainable for a van-
ishingly small value of E,,(l). Thus, the threshold conditions for oscillation
are given by the solution of the equation

Mem,w + Memzw
(31 - 52)(51 - 53) (62 - 63)(52 - 51)

__ 8 +40C  yen o

B =Y = 0 (11117
Since this equation has real and imaginary parts, there are in reality two
simultaneous equations to be solved. Thus, two conditions are determined.
One condition is CN, a quantity which we may interpret loosely as the
product of gain per wavelength times the number of circuit wavelengths.
This interpretation is based upon assuming an analogy to forward-wave
amplifier theory, whereas in reality Equation (11.1-15) shows that back-
ward-wave amplifier gain is given by an extremely complicated expression,
not simply proportional to CN. The other condition determined by Equa-
tion (11.1-17) is b, the degree of synchronism between the beam and the
space harmonic. This condition is analogous to the phase condition in
oscillator theory. For a given helix voltage, this condition determines the
frequency of oscillation precisely.

Solutions for the backward-wave oscillator starting conditions are not
easily obtained. This is due to the fact that the values of the §’s are by
Equation (11.1-11) functions of b and C, which are unknowns. Thus,
Equations (11.1-11) and (11.1-17) must be solved simultaneously, a task
accomplished most readily with an analogue computer.

Let us examine the nature of the solutions in two simple cases. First, we
assume zero space charge (QC = 0) and zero circuit loss (d = 0). The
start-oscillation conditions are from computer calculations:!

CN = 0.314
b= 1522 (11.1-18)

For a given helix voltage on a particular tube, the first condition in effect
determines the beam current above which oscillations are produced. The
second condition determines the exact frequency of oscillation. The cor-

1Reference 11.1.
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responding values of § are
81 = 0.725 + 50.150
8 = —0.725 + 70.150
8 = 0.083 — 51.796 (11.1-19)

Phasors representing the three waves are shown in Figure 11.1-1. These
phasors are derived from Equation (11.1-12) and the appropriate values of 4.

(a8) COLLECTOR END

/Eznz
N\

Ezna

Ezm

(b) cUN END

Fia. 11.1-1 Phasor diagrams for the three waves in a backward-wave oscillator
with QC = d = 0. (a) Waves at the collector end of the helix; these waves add to
zero. (b) Waves at the gun end of the helix; these waves add to produce the
output signal.

At the collector end of the circuit, the three phasors add to zero. As these
waves propagate from the collector end to the gun end, they experience
differential phase shift and different degrees of amplitude change by
Equations (11.1-19) so as to obtain a non-zero resultant field at the gun end.
The only wave that grows in this direction is E..,, and we see from Figure
11.1-1 that this contributes only slightly to the total field at the gun end.
Thus, backward-wave interaction is seen to be principally an interference
effect between various waves rather than a growing-wave phenomenon as in
the forward-wave amplifier. The conditions in a backward-wave amplifier
are similar to those shown in Figure 11.1-1; in this case, the three waves at
the collector end do not quite add to zero.
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As a second example, we consider the solutions for large space charge
(QC > 0.25) and zero circuit loss (d = 0). Under these conditions it can
be shown? that the start-oscillation conditions are

CN = 3(QC)
b= \4QC
and the corresponding values of & are
o1
o2
]

R

iV4QC

IR

R

>3

d; corresponds to the fast space-charge wave,
as in Equation (10.1-51). This wave is negli-
gible in amplitude compared with the other
two waves. The phasor diagrams for the
three waves are shown in Figure 11.1-2 for
QC = 1. We see that for large space charge
we may think of the backward-wave oscillator
circuit field as given by the interference of two
waves. At the collector end they are 180 de-
grees out of phase, whereas differential phase
shift causes them to be in phase at the gun
end.

Accurate computations have been made of
the start-oscillation conditions over the use-
ful ranges of space charge and circuit loss.?
These results are presented in Figures 11.1-3
and 11.1-4. These curves are used as follows.
For a given helix voltage the ratio @/N is cal-
culated (both @ and N are independent of
beam current):. CN for start oscillations is
obtained from Figure 11.1-3. Then b is cal-
culated from Figure 11.1-4 and the known
value of CN. The beam current can be cal-
culated from the value of CN and the known
values of beam-coupling impedance, beam
diameter, etc. This procedure gives the start-

—jVAQT(1 + 3(QC)™

(11.1-20)

—JV4QC(1 — £(QC)~/]

(11.1-21)

Ezn1 et

-TL
Eznz2€ Tz

Eznae T3

(8) COLLECTOR END

Ezns
Eznz -——————%

Ezna
(b) GUN END

Fie. 11.1-2 Phasor diagrams
for the three waves at the two
ends of the helix of a back-
ward-wave oscillator with QC
=1,d=0. (a) Collector
end. (b) Gun end.

2Reference 11.1. Equations (11.1-21) were not correct as originally published.

3Ibid.
4See Problem 10.2,
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F1e. 11.1-3 Oscillations are produced in a backward-wave oscillator for values of

CN equal to or greater than the value given above. Its value is a function of the

space-charge parameter and the total circuit loss (Reference 11.1). (Courtesy of
Proceedings IRE)

ing current at one frequency; it is repeated to determine the starting condi-
tions at other frequencies.

The above theory and results apply only at the threshold of oscillation.
The equations were derived on the basis that all rf beam perturbations are
extremely small so that the various physical equations are all linear.® As

5This was discussed in connection with Equations (9.3-12) and (10.1-12).
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the beam current is increased above the starting current, the level of oscilla-
tion is limited by nonlinear effects in the beam kinematics. The output
power increases with beam current and the oscillation frequency decreases
slightly; the latter effect is known as frequency pushing.
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F1g. 11.1-4 Curves determining b in a backward-wave oscillator at start oscillation

as a function of the space-charge parameter and circuit attenuation. b determines

the exact frequency of oscillation, using Equation (10.1-40) (Reference 11.1).
(Courtesy of Proceedings IRE)

Another effect that may appear at higher beam currents is a higher mode
of oscillation. This mode is predicted as the next higher-order solution of
the transcendental Equation (11.1-17). Since this mode requires a beam
current related to the main-mode starting current by a factor of eight or
greater, it is not obtained under normal operating conditions.

The rf power output cannot be predicted from the linear theory pre-
sented here. A combined theoretical-empirical analysis has been made to
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determine this important quantity.® The results are that the maximum
electronic efficiency is given by

1022 1.3C (11.1-22)
for small space charge (QC < 0.5) and by

for large space charge (QC > 0.5), where C and w, are calculated at the
operating value of beam current, which is somewhat larger than the starting
current. Since C and w,/w are typically quite small in these tubes, maxi-
mum electronic efficiencies are usually no more than a few per cent. These
efficiencies are maximum in the sense that various imperfections in the
tube (such as circuit loss and poor circuit match) cause further reduction
of the output power.

11.2 Backward-Wave Oscillators

The most commonly used slow-wave structure for backward-wave
oscillators is the helix. Interaction is with the —1 space harmonic as
shown in Figure 11-2.

The characteristics of the Brillouin diagram for the helix have been
determined in the preceding chapter. The frequency of oscillation is ap-
proximately given by the intersection of the voltage line O4 in Figure 11-2
with the —1 space harmonic. An accurate determination of the frequency
requires the use of Equation (10.1-40) together with a knowledge of b and C.

Over what frequency range will a typical tube operate? As the helix
voltage is increased, the voltage line approaches coincidence with the
fundamental space harmonic. This situation occurs at a frequency cor-
responding to ka = 0.5. The electrons are in synchronism with two space
harmonics simultaneously. If the ends of the helix are not perfectly
terminated, reflections are set up which are amplified in both directions,
causing erratic behavior in the power output as a function of frequency.
This situation is usually avoided by restricting operation to frequencies
below this point.

At extremely low frequencies the coupling impedance K_; drops off
rather seriously, as we shall see later. Since there is an upper limit to the
beam current, CN falls below the start-oscillation value, and the tube will
not oscillate. Thus, operation is usually restricted to the frequency range
from ka equal to 0.1 or 0.2 up to ka slightly below 0.5.

SReference 11.2.



BACKWARD-WAVE OSCILLATORS AND AMPLIFIERS 411

Next we shall consider an evaluation of the coupling impedance K_,.
No exact theoretical analysis has been made of this parameter. However,
several rather complicated approximate analyses have been made.” Follow-

v Ve—ifol
I ] i
ok ]
DU |
Y

Fia. 11.2-1 Cross section of a thin tape helix obtained by the intersection with the
semi-infinite plane given by 8 = 0.

ing the pattern set up in the previous chapter, we shall present an extremely
simple approximate evaluation of K_, which compares favorably with the
more complicated analyses over the useful frequency range of the helix.

Let us consider a thin tape helix. Figure 11.2-1 shows a cross-sectional
view of the helix obtained by means of the intersection with the semi-
infinite plane § = 0. By Floquet’s Theorem the voltages across two succes-
sive gaps in this plane differ by the factor e~#, agsuming negligible circuit
attenuation. We consider, for the purpose of this analysis, the set of space
harmonics with positive group velocity. Identical results are obtained for
the set with negative group velocity.

From Equation (10.3-7) the axial electric field at r = @ and 6 = 0 is
given by

E, = 2 Bl o(yn)e#ne (11.2-1)

n

We assume that the electric field does not vary with position within the
gap. The evaluation of the coefficients B, proceeds as in Equations
(10.2-15) to (10.2-17), obtaining

BuLL,(v:0) = My V (11.2-2)

where M,y is defined by Equation (10.2-20) and V is the voltage across
the gap at z = 0. Thus, the total axial field within the helix is given by

2 Ml(n)I hﬂ)é‘”"’ iz (11.2-3)

a summation of space harmonics.

"References 11.3, 11.4,



412 PRINCIPLES OF ELECTRON TUBES

The impedance is evaluated from Equation (10.1-19) as

_ | BcnldS _ My MoV
K, = e S = 55_LiP (11.2-4)

. } /

25

T
NE;T; ) TIEN-{ ///
V/

EQU. (11.2—9)—~\\
L
/

1~ WATKINS —ASH

2 0.3 0.4 0.5
ka

IN OHMS

\\\

[

0 0.

Fra. 11.2-2 Backward-wave impedance of a tape helix for /L = 1/3. The sim-
plified theory of this chapter is compared with the more complicated theoretical
values derived by Tien (Reference 11.4) and Watkins-Ash (Reference 11.3).

where the space-harmonic amplitude is obtained from Equation (11.2-3).
Myny? is defined by the equation

_ _1_ Inz('an)
Myw? = f T i (11.2-5)

where S is the beam cross-sectional area, and the integral is taken over the
beam cross section.
The impedance for the fundamental is given in the same manner as

K _ [ |E.'d8 _ Mio*Mso?|V

282PS ~ 282PS (11.2-6)
Combining Equations (11.2-4) and (11.2-6), we obtain
K, = g ey Macnt BoL) (11.2-7)

‘ M1(0)2 ]ll2(0)2 (B—IL)2

relating the beam-coupling impedances of the fundamental and —1 space
harmonies. Sinee we have derived an expression for K, in the preceding
chapter, this equation enables us to determine K_;.
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From Figure 11-2 we have the following relationships:
B.L = 27ka
B-L = 2x(1 — ka) (11.2-8)

These relations are inserted into Equation (11.2-7) together with Equation
(10.3-22) for K, to obtain

— ka)

e
PG U1 il A

VT — k)t ohms (11.2-9)

. 4
sin? fka

This is plotted in Figure 11.2-2 as a function of ka for §/L = 4. Also plotted
are the results of two other analyses.® A comparison of these three results
tends to substantiate the approximate analysis we have used.

The radial variation of the —1 space-harmonic field is proportional to
the function I:(yir), plotted in Figure 10.3-2. This function goes to zero
on the axis, so electrons there do not interact with the circuit. Consequent-

oAby

Fra. 11.2-4 SE 201 backward-wave oscillator. (a) Vacuum tube alone, without

rf output coupling and focusing magnet. (b) Complete package of tube in per-

manent magnet. The package is 22 em long and 11 em in diameter. (Courtesy
of Stewart Engineering Co.)

8]bid.
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ly, backward-wave oscillators are often built using hollow beams instead of
solid ones.?

As an example of a practical backward-wave oscillator, let us consider the
Stewart Engineering Company SE 201, shown in Figure 11.2-3. Photo-
graphs of the tube are shown in Figure 11.2-4. This tube delivers a mini-
mum of 10 mw of power electronically tunable over the frequency range 7 to
12.4 Ge. The power output and helix voltage as a function of frequency
are shown in Figure 11.2-5 for a beam current of 7 milliamps. The electron
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F1a. 11.2-5 Electrical characteristics of the SE 201 for a constant beam current of
7 ma. (a) Power output vs. frequency. (b) Tuning curve, helix voltage vs. fre-
quency. (Courtesy of Stewart Engineering Co.)

4 13

beam is hollow, with an outer diameter of 2.9 mm and an inner diameter of
2.4 mm. The power may be varied by means of a control grid in the electron
gun, which varies the beam current. Amplitude modulation is obtained in

9Space-charge reduction factors for hollow beams are given in Reference 9.3.
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this manner. The collector is cooled by heat conduction to the envelope of
the package.

The helix is a molybdenum tape, 0.127 mm thick and 0.508 mm wide.
The tape is wound into a helix with an inside diameter of 3.2 mm and a
pitch of 1.06 mm. At the highest operating frequency, ka = 0.416.

The tube is packaged in a permanent magnet; the complete package
weighs 11 pounds. The electron beam is focused using confined flow as
described in Section 3.4(b); that is, the magnetic field is relatively uniform
from the cathode to the collector. The permalloy rings help to provide a
uniform magnetic field as in the tube of Figure 10.3-7. The gun end of the
helix is connected to the center conductor of a coaxial cable for rf output
power by means of a pin through the glass envelope of the tube.

A lossy material is applied at the collector end of the helix so as to provide
an internal rf termination. The pin connection at this end of the helix is for
connection to the helix de power supply.

An important characteristic of oscillators is the relative strength of the
desired output signal as compared with all other spurious frequencies. The
desired signal in this tube is at least 60 db larger than the total power in all
spurious signals. Backward-wave oscillators in general produce extremely
clean output signals.

The chief disadvantage of the backward-wave oscillator is its low elec-
tronic efficiency. At the highest frequency at which the SE 201 operates
the tube has an electronic efficiency. of only 0.3 per cent. On the other hand,
the backward-wave oscillator provides a wider electronic tuning range than
any other microwave tube. The backward-wave oscillator has been built
at higher frequencies than any other microwave tube; power outputs of a
few milliwatts have been obtained at 500 Ge.

11.3 Backward-Wave Amplifiers

The backward-wave oscillator may be used as a backward-wave amplifier,
provided that rf coupling is furnished at the collector end of the helix for
application of the input signal. The beam current is adjusted to a value
below the current needed to start oscillation. The amplified output signal
is taken from the gun end of the helix.

The helix voltage is adjusted as indicated in Figure 11-2. Amplification
is obtained at the frequency of synchronism with the —1 space harmonie.
As the signal frequency is varied from the synchronous value, the space-
harmonic phase velocity departs from the beam velocity much faster
than in a forward-wave amplifier. As a result, backward-wave amplifiers
have much narrower fractional bandwidths, typically 0.1 to 1 per cent.

The voltage gain of a backward-wave amplifier is given by the reciprocal
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of the right-hand side of Equation (11.1-15). For a particular tube, at the
beam voltage and frequency corresponding to synchronism, the right-hand
side of Equation (11.1-15) is a function of the beam current, F(I,). At start
oscillation it is equal to zero,

F(lsr) =0 (11.3-1)

We can find an approximate expression for the gain as a function of beam
current by expanding F(I,) in a Taylor series about the starting current.
That is,

F(l,) = F(Isr) + [S—Z]MT(IO — Isr) (11.3-2)

In taking the partial derivative, we make the simplifying assumption that
the total change in F with current is due to the change in C in each exponent.
Thus, we neglect the variations in the &’s and QC. Using this approxima-
tion, one obtains:

F() = I, — Isr 2aCN [ 88 +4QC) Luon n 8:(52* + 4QC) arboN

Ist  3lsr | (01— 82)(51 — 83) (62 — 63)(02 — 6v)

83(85* + 4QC)

mezmw] (11.3-3)

where all the parameters are evaluated at Isy. The gain may thus be
written as

kl
1= L

Isr

gain = 20 log IF_'(II.,ﬂdb = 20 log db (11.3-4)

where k' is a function of the helix loss and the space-charge parameter, as
defined by the last two equations. Values of &’ are given in Table 11.3-1 for
zero helix loss and various values of QC. Maximum gain is obtained for QC
in the neighborhood of 0.5. Equation (11.3-4) is plotted in Figure 11.3-1
for QC = 0.

TaBLE 11.3-1

QC 4

0. 1.01
025, ... . 1.22
050, . ... ... .. 2.03
0.75. .o 1.71
1.00. ... 1.83
150, ... 1.68



418 PRINCIPLES OF ELECTRON TUBES

Examination of Figure 11.3-1 reveals that appreciable gain is achieved
only for beam currents extremely close to the starting current value. In
addition, slight variations in the beam current produce large fluctuations in
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Ist
Fic. 11.3-1 Theoretical gain of a single helix backward-wave amplifier for QC = 0.
The value of gain is the maximum value at the center of the amplification band.
Appreciable amounts of gain are obtained only for beam currents just below the
starting current, I sr.

the gain at high-gain levels. This characteristic makes gain stability a seri-
ous problem. This is a consequence of operating so close to the point of
oscillation. Since Igr generally increases with frequency, the gain at
constant beam current generally decreases with frequency.

Another disadvantage of this device is the lack of discrimination against
signals outside the amplifying passband. All signals may propagate along
the helix from the input to the output without any attenuation other than
the normal helix attenuation. This latter attenuation is kept as small as
possible so as to obtain maximum gain at the operating frequency. In
contrast, the circuit sever in the forward-wave amplifier provides 60 db or
more of attenuation to signals outside the amplifying band.

These disadvantages are eliminated in the device shown in Figure 11.3-2,
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the cascade backward-wave amplifier.® This device is evolved from the
single-helix backward-wave amplifier by using two helices of equal length.
Each helix has one end terminated as shown. This procedure is analogous
to the transition from a two-cavity to a three-cavity klystron amplifier.

The amplifier functions in the following manner. The first helix acts as a
single-helix backward-wave amplifier, with the amplified circuit power be-
ing dissipated in a termination at the gun end of the helix. The modulation

TERMINATION s'#;’?&';_{ gllJGTNPXJ TERMINATION
ELECTRON
GUN
/ PN O U o N o U o L - . . . =]
>C LUUUUUUUUY UUUU UL ll
/COL-L-ECTOR

\ e e S N
Vao,
- || %
Vho

[

Fie. 11.3-2 The cascade backward-wave amplifier.

produced on the beam by the first helix is carried by space-charge waves to
the second helix, where backward-wave interaction produces additional
gain. The output signal is removed from this helix as shown in Figure
11.3-2. Because of the physical separation between the two helices, the
input and output ports of the tube are effectively isolated for frequencies
outside of the amplification band.

It may at first appear that the gain of the cascade amplifier is merely
twice the gain in db obtained on the first helix. However, this is not the
case; the gain of the second helix is considerably larger than that of the first
helix. This is due to the fact that the beam is premodulated upon entering
the second helix, resulting in enhanced interaction and larger overall gain.
As an example, for a beam current of one-half the starting current for either
helix, the gain in the first helix is 6 db, whereas the gain in the second helix
is 15 db. These theoretical values are for QC = d = 0. In this case, an
overall gain of 21 db is obtained for a beam current considerably below the
starting current.

Experimental curves for the gain of a particular cascade backward-wave
amplifier are shown in Figure 11.3-3."" The variation of gain with beam
current is much less severe than in the case of a single-helix tube, for equal
overall gains. One drawback of the backward-wave amplifier is evident

WReference 11.5.
nJbid.
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Fia. 11.3-3 Experimental measurements of gain in a cascade backward-wave

amplifier. Appreciable values of gain are obtained for beam currents considerably

below the starting current. The helix voltage is adjusted for maximum gain at each
frequency (Reference 11.5). (Courtesy of Proceedings IRE)

from these curves. The maximum gain varies considerably with frequency
for a constant beam current. For a beam current of 3 ma, the gain varies
from 17 to 27 db for the frequencies indicated in the figure.? Constancy of
maximum gain can be achieved by varying the beam current in conjunction
with the helix voltage.

The cascade backward-wave amplifier is thus seen to overcome the most
serious drawbacks of the single helix version. As a result, we have a practi-
cal device for those applications requiring a narrow-band amplifier, voltage
tunable over a wide frequency range.

PROBLEMS

11.1 An idealized, lossless slow-wave structure has a Brillouin diagram whose
fundamenta) or zero-order space harmonic is a straight line between the points

12Thus at 2175 Mc the starting current is 3.45 ma. For a beam current of 3.0 ma,
I./Isr = 3.0/3.45 = 0.87, and the corresponding gain is 27 db. On the other hand, at
3600 Mc a beam current of 3.0 ma gives Io/Isr = 3.0/8.7 = 0.34. The corresponding
gain is 17 db.
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BL = 0, w = w,/2 and BL = 7, w = w,. The axial component of the electric field
is given by the expression

©

VP N1\ et
E.(z,y2) = 10_L(—{,,> z_nz 1

where

2wn

Bn=ﬁo+T

and P is the total power flow for a propagating mode.

(a) Sketch the Brillouin diagram over the range —2x < 8L < 2r. Indicate
typical points of operation for traveling-wave amplifiers and backward-wave
oscillators.

(b) Derive expressions for the beam-coupling impedances for fundamental and
backward-wave interaction.

(¢) In operation as a forward-wave amplifier the beam voltage is pulsed up to
give synchronous interaction with the fundamental space harmonic. During
the rise time of this voltage pulse, the electron velocity is synchronous with
the phase velocity of the backward wave, and there is the possibility of back-
ward-wave oscillations. Derive an expression for CN for the backward wave
as a function of the variables w and 8., assuming 8_; = 8. (small C). The
ratio of I, to V,¥2 remains constant during the rise time of the voltage.

(d) What is the maximum gain of the traveling-wave amplifier at the frequency
w = 3w, limited by the criterion that backward-wave oscillations are not
produced during the rise time of the beam voltage pulse? Assume small C,
and QC = d = 0. b = 0 for the amplifier. The circuit is perfectly matched
at both ends. Ans.: 11.9 db.

11.2 Show that M._p? in Equation (11.2-9) for an annular beam in a helix is
given by

Mot = b 2(y—id) — Lo(y-i0) Io(y-1b)] — L (y-a¢) — Lo(y—10) a(ysc)]
- (8 — ) LHy-0)

where @ is the helix radius, b is the outer beam radius, and ¢ is the inner beam radius.
The following expressions will be helpful:

I_y(ar) = —=I{ar)

/ rli¥ar)dr = %2[1 ar) — Io(ar)Ix(ar)]

11.3 A tape helix backward-wave oscillator is to be designed to oscillate at 9 Ge.
Find the helix length and beam current necessary for oscillations to start at a beam
voltage of 2500 volts, using Figures 11.1-3 and 11.1-4, assuming negligible helix
less. Assume the electron beam is a thin annular beam just grazing the helix, so
that My = 1; assume 8/ = % so that the helix impedance is given by Equation
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(11.2-9) as plotted in Figure 11.2-2. The following parameters are also given:

Helix radius a = 2.54 mm
coty = 10
Space-charge reduction factor B = 0.4
Beam cross-sectional area = 4 mm?
Ans.: 2,06 cm, 49.6 ma.

11.4 Calculate the power output for the backward-wave oscillator of the previous
problem at beam currents of 60 ma, 100ma, and 200 ma.

11.5 For large values of the space-charge parameter QC, the incremental propaga-
tion constants of a backward-wave oscillator are given by Equations (11.1-21).
(a) Show that the magnitudes of the convection current and the z component
of the electric field due to the circuit at the threshold of oscillation are given

as functions of z by the equations:

|i2) [ = | (D) | sin $8.C(QC)™/*
| E.o(2) | = | E.0(0) |cos 3B.C(QC) 42
(b) From the results of part (a) show that the starting value of CN is given by
CN = 3(@QO)

(¢) If the beam current is made much larger than the value necessary to start
oscillations, the backward-wave oscillator will oscillate in a higher-order mode.
Assuming that this higher order mode occurs at the same frequency and beam
voltage as the fundamental mode of oscillation, show from the results of part
(a) that it occurs at a beam current equal to 81 times the starting value for
the fundamental mode of oscillation.
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