Chapter 3

BEAMS AND LENSES

An axially symmetric electric or magnetic field can be used to focus a
beam of electrons much as a light lens focuses visible rays. Figure 3-1
illustrates the focusing action of a converging light lens. Rays that pass
through the lens close to the axis and in directions nearly parallel to the
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Fie. 3.1 The focusing action of a converging light lens on rays which are close
to the axis and nearly parallel to the axis.

axis are given a deflection which is proportional to the distance of the rays
from the axis.

An axially symmetric electric or magnetic field, or a combination of the
two, acts in a similar manner on the trajectories of electrons traveling
through the field. Electrons that enter the field along paths close to the -
axis and nearly parallel to the axis experience a radial force which is pro-
portional to the distance of the electrons from the axis. The electron tra-
jectories therefore are deflected in proportion to their distance from the axis,
and the axially symmetric field acts as a lens. Figures 3-2(a) and 3-2(b)
illustrate an electric electron lens and a magnetic electron lens, respectively.
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A considerable parallelism exists between the geometric relations that
govern the paths of light rays through a light lens and those that govern
the trajectories of electrons through an electron lens. However, it will be
useful to note several important differences between the two kinds of lenses.
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Fie. 3.2 An electric electron lens and a magnetic electron lens.

In the first place, the boundaries of a light lens are usually well defined,
whereas an electron lens between field-free regions has no well-defined
boundaries, since the field approaches zero asymptotically at the ends of
the lens. Rays passing through a light lens, such as that illustrated in
Figure 3-1, suffer abrupt changes in direction in passing between the dif-
ferent media that make up the lens, but the electron trajectories in an
electron lens change only in a continuous manner. The electron lens has
greater versatility than a light lens in that its strength can be varied merely
by changing the field intensity. However, we shall find that a charge-free
region of axially symmetric electric or magnetic field can act only as a
converging lens on a beam of electrons whose path begins and ends in
regions of zero field. In this respect there is no counterpart to the diverging
lens of light optics. Furthermore, aberrations in electron lenses are gen-
erally greater than in light lenses, and correcting for the aberrations is
much more difficult. Finally, a magnetic electron lens causes a rotation
of the image about the axis of the lens, and there is no counterpart to this
in light optics.

It will be convenient to make use of several simplifications in notation
in expressing the equations we shall use in this chapter. A single dot over a
variable will be used to indicate the first derivative with respect to time, and
a double dot will indicate the second derivative with respect to time.
Thus # = dr/dt, and # = d*/di*. Similarly ' = dr/dz, and v’ = d* /dz?,
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F1a. 3.1-1 Several electric electron lenses. Approximate shapes of trajectories of
electrons passing through the lenses are shown by the solid lines.

where z is the axial coordinate. The ratio e/m appears frequently in the
equations, and we shall denote it by 1.

3.1 Electric Lenses

Figure 3.1-1 illustrates several types of electric lenses. The approximate
shapes of trajectories of electrons passing through the lenses are shown in
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the figure. The lens shown in Figure 3.1-1(a) is formed by two coaxial
eylinders of equal radius, the one at the right being at higher potential
than the one at the left. An arrow on the upper trajectory indicates that
it is the trajectory of an electron which passes through the lens from left
to right. To the left of the gap the electron experiences a radial force
tending to deflect it toward the axis, whereas to the right of the gap the
radial force is directed away from the axis. However, since the electron is
further from the axis to the left of the gap, and since the radial component
of the field increases with distance from the axis, the inward force to the
left of the gap is stronger. Furthermore, the electron travels more slowly
to the left of the gap because it is in a region of lower potential. Conse-
quently, the trajectory receives a net deflection toward the axis, and
some distance to the right of the lens the electron crosses the axis.

The lower trajectory shown in Figure 3.1-1(a) is that of an electron which
travels from right to left. As the electron enters the field, it is at first de-
flected away from the axis. However, after passing the gap, the electron
travels more slowly, and since it is further from the axis, it experiences a
relatively strong inward force. The electron, therefore, receives a net de-
flection toward the axis in passing through the lens.

Similar reasoning applies to the other electron trajectories shown in
Figure 3.1-1. Each trajectory is reversible in the sense that an electron
emerging from the lens would follow the same path back through the lens
if its direction of travel were reversed without changing the magnitude of
its velocity. Clearly, for a given potential difference between the electrodes,
the faster an electron is traveling at the time it passes through a lens, the
smaller the angle through which it will be deflected.

A particularly interesting lens is that illustrated in Figures 3.1-1(c) and
3.1-1(d). The lens focuses an electron beam for either Vo > Vior V, < Vi
By holding V; constant and varying V, the stength of the lens can be
varied without changing the electron velocity on either side of the lens.
Such a lens is used in many cathode-ray tubes to focus the electron beam.
It is often called an einzel lens. The German word “einzel” means “single”
and is used in this case to imply that the potential and the electron velocity
are the same on either side of the lens.

Let us consider the radial forces acting on an electron in an axially
symmetric electric field. In Appendix V it is shown that the potential at
radius » from the axis of an axially symmetric potential distribution is
given in terms of the potential along the axis by

2 .
Vie,r) = V(z,0) — Z—V”(z,O) + GL;V”"(z,O) - (3.1-1)

where V(z,0) is the potential along the axis, and the primes indicate dif-
ferentiation with respect to z. By means of Equation (3.1-1) the potential
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at all points in an axially symmetric potential distribution can be described
in terms of the potential on the axis. For regions close to the axis we can
neglect all but the first two terms of this expression, so that

2
Vier) = V(z,0) — g—v"(z,()) (3.1-2)
and the radial gradient of potential is given by
aVizr) _ _Ton

Since the radial force acting on an electron is given by —eE, = e(dV/dr), it
follows that for small r the radial force is proportional to the distance of
the electron from the axis. If the electron is traveling nearly parallel to
the axis, its trajectory is deflected by an amount proportional to the dis-
tance of the trajectory from the axis. This therefore explaing the lens action
of an axially symmetric electric field.

Figure 3.1-2 shows a two-cylinder electron lens in which the spacing
between the cylinders is small compared with their radii. An expression!
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Fia. 3.1-2 A two-cylinder electric lens. The axial potential ¥ (z,0) and its first and
second derivatives are shown below the lens. The positions of the principal planes
and the focal points for V, = 4V, are indicated (see Figure 3.1-4).

1Reference 3.1.
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for the potential along the axis V(2,0) is plotted in the figure together with
plots of V'(2,0) and V''(2,0). The potential V(z,0) varies only slightly
with changes in spacing between the cylinders, provided the spacing re-
mains small compared with the radii of the cylinders. From the foregoing
discussion it is evident that the radial foree on an off-axis electron is pro-
portional to the product of the distance of the electron from the axis and
V”'(2,0). To the left of the mid-point between the cylinders the radial
force is directed toward the axis, and for a given value of r it reaches a
maximum R/2 to the left of the mid-point, where R is the radius of the
cylinders. To the right of the mid-point the radial force is outward, and
for a given value of r it reaches a maximum R/2 to the right of the mid-
point. ,

The equation describing the trajectory of an electron that travels nearly
parallel to the axis of an axially symmetric electric field and at a small
distance r from the axis is known as the paraxial-ray equation. It will be
helpful to derive this equation, since we shall use it in later discussion.
From Equation (3.1-3), we can express the radial force acting on an electron
as

mi = ng”) = ~ZV"G0) (3.1-4)
Now
PR (3.1-5)
and
P =GR+ s (3.1-6)

If the electron trajectory is nearly parallel to the axis, z will be approximate-
ly equal to the total velocity of the electron, and (2)? can be equated to
29V (2,r), where n = e/m, and V(z,r) is measured relative to cathode potential.
The quantity z on the right-hand side of Equation (3.1-6) is equal to the
instantaneous acceleration of the electron in the z direction, or nV'(z,r).
Furthermore, V(z,r) = V(2,0) and V'(z,r) = V'(2,0), so that Equation
(3.1-6) can be rewritten as

= 29V (2,0)r" + 9V'(2,0)r 8.1-1)
Combining this with Equation (3.1-4), we obtain
V'(2,0) V' (2,0)
2 ") o ) -
"+ V0 + 4V(z,0)r 0 (3.1-8)

This is the paraxial-ray equation which we set out to derive. Several
important conclusions can be drawn from it:

1. If ri(z) and ry(z) are two independent solutions of the equation, then
ari(z) + bra(2) is also a solution of the equation, and, in fact, any solution
r3(2) can be expressed in the form r;(2) = ari(z) + bre(2).
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2. Since the equation is homogeneous in V, increasing the electrode
potentials in the same proportion does not change the shape of the tra-
jectory. through the lens. Furthermore, the equation is independent of
¢ and m, so that an electron or a negatively charged ion accelerated through
the same potential rise and entering the lens along the same trajectory
would follow the same path through the lens.

Equation (3.1-8) can be expressed in a second useful form by substituting
r=8y-i (3.1-9)
where V = V(z,0). This leads to

16\ V

Let us integrate Equation (3.1-10) along the axis of an axially symmetric
field from one region of zero field to another. We obtain

S+ 1(2)28 -0 (3.1-10)

22 ’
S — S = _% . (—177)2Sdz (3.1-11)
where z; and z; are the z coordinates of two points on the axis on opposite
sides of the lens and at which the potential gradient is zero. The point 2,
is assumed to be on the initial side of the lens, and the point 2z, is on the final
side. Since the integrand on the right-hand side is always greater than zero,
it follows that

S -8 <0 (3.1-12)

Now 8 = rV¥4 and §' = V4 + rV’/4V3/4. Consider an electron which
approaches the lens along a path that is parallel to the axis but displaced
from it. For such an electron

Sy = | Vs 4 V' /4T |, = 0

since ' = V' =0 at 2 = z. It follows from Equation (3.1-12) that
S’ < 0. However, at z = 2z, V' = 0, so that 7’ < 0 at 2 = z;. Thus the
path of the electron is bent toward the axis by the field, and we must
conclude that all charge-free regions of axially symmetric electric field between
field-free regions act as converging lenses.

If an electron approaches a lens along a path that is parallel to the axis
but displaced from it, the electron emerges from the lens as though it were
deflected at a plane which generally is not at the geometrical center of the
lens. This effect is illustrated in Figure 3.1-3 for several trajectories passing
through an axially symmetric field at different distances from the axis.
The plane at which the trajectories appear to have been deflected is called
a principal plane, and the point where the electrons ultimately cross the
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REGION OF FIELD

PRINCIPAL
PLANES

Fic. 3.1-3 The principal planes, the focal lengths, and the focal points of a lens.

axis is called a focal point. The distance from the principal plane to the
focal point is called the focal length. There are two principal planes I and II,
two focal points F; and F, and two focal lengths f; and f,, one of each associ-
ated with electrons moving in either direction through the lens. If the
electrodes and their potentials are symmetrical about the geometrical
mid-point of the lens, as in the case of the einzel lens shown in Figures
3.1-1(c) and 3.1-1(d), the focal points and principal planes are also sym-
metrically located about the mid-point. However, in the case of the lens
shown in Figure 3.1-2, where the potentials are not the same on either
side of the geometrical mid-point, the principal planes are displaced to-
ward the low-voltage side of the lens, and the focal lengths are not equal.
The location of the principal planes and focal points is shown in Figure
3.1-2 for the case in which the potential of the right-hand cylinder is four
times that of the left-hand cylinder.

Mathematical expressions for the potential V(2,0) along the axis of a
lens are available for only a few electrode configurations, one example
being the two-cylinder lens of Figure 3.1-2. Goddard? has used the ex-
pression for ¥ (z,0) given in Figure 3.1-2 to obtain solutions of the paraxial-
ray equation for the case of electrons which approach the lens along paths
that are parallel to the axis but displaced from it. In this way the positions
of the prineipal planes and the focal lengths of the lens were determined as
functions of V./V.. Figure 3.1-4 shows plots of the focal lengths f, and f.
and the distances z; and z, from the mid-point of the lens to the principal
planes for a range of values of V,/V:. The location of the principal planes
is found to remain nearly constant for V./V, greater than about 4.

2Reference 3.2.
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Fic. 3.1-4 The focal lengths f; and f; for a two-cylinder lens, such as that shown in

Figure 3.1-2, as a function of the ratio of the potentials applied to the cylinders.

The potentials V; and Vs are measured relative to that of the cathode from which

the electrons are emitted. The distances x; and z; from the gap between the cyl-

inders to the principal planes are also plotted in the figure. (From L. 8. Goddard,
Proc. Cambridge Phil. Soc. 42, 106, 1946)

In general, expressions for V(z,0) are very complicated, so that an ex-
plicit solution of the paraxial ray equation is difficult, if not impossible,
to obtain. Furthermore, for many electrode configurations an expression
for V(2,0) is not available. When there is no expression for V(z,0), the
electrode configuration can be simulated in an apparatus called an elec-
trolytic tank, and the axial potential can be measured experimentally.
Approximate solutions to the paraxial-ray equation can then be obtained
by breaking the field up into a number of segments in the axial direction

3See, for instance, Reference 3b, Figure 5.15, p. 67.
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and estimating the path of an electron across each segment.! In a few
specific electron lenses, data concerning the locations of the principal
planes and focal lengths have been obtained by direct measurement of the
focusing action of the lenses upon electron beams passing through them.
Such data are given in Reference 3.5 and in Reference 3e, pp. 369-373.
In Appendix VI the following relations between the object position, the
image position, and the focal lengths of an electron lens are derived:

Ly b
hil_y (3.1-13)
magnification = a8 SIZ& _ hiv (3.1-14)

object size  fru

and

% _ (%)“2 (3.1-15)

where the object is located w units to the left of the first focal plane and the
image is located v units to the right of the second focal plane. The region
to the left of the lens is at potential ¥, with respect to the cathode, and the
region to the right of the lens is at potential V.. From Equation (3.1-15)
we see that for the two-cylinder lens shown in Figure 3.1-2 the focal length
fais twice fi, when V, = 4V,

In a cathode-ray tube the electron gun directs the beam to a “crossover,”
and a lens beyond the crossover forms an image of the crossover at the
screen of the tube. Using Equations (3.1-13) and (3.1-14), the position of
the image and its magnification can be related to the focal lengths of the
lens and the position of the crossover.

The concepts of principal planes, of focal points, and of focal lengths
have been adopted from light optics, where they are used to describe the
paths of light rays through lenses. The arguments that are employed in
Appendix VI to derive Equations (3.1-13) and (3.1-14) apply equally well
to a light lens, and, in fact, Equations (3.1-13) and (3.1-14) are of principal
importance in work with light lenses. It can be shown that the square root
of electric potential in the case of an electron lens is analogous to index
of refraction in light optics. For a light lens at the surface between two
media of different indices of refraction, the ratio of the focal lengths is
given by fo/fi = ns/ni, where n, and n, are, respectively, the refractive
indices of the media in which the focal points F, and F, are located. The
two-cylinder lens shown in Figure 3.1-2 is therefore analogous to a light lens

4Methods for making such computations are discussed in: Reference 3. 3; Reference
3.4; Reference 3a, Chapter III; Reference 3b, p. 101; Reference 3e, p- 360.
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at the boundary between two media of different refractive indices, whereas
the einzel lens is analogous to a light lens surrounded by a medium of the
same index of refraction.

3.2 Magnetic Lenses

Figure 3.2-1 shows a magnetic lens that is formed by a cylindrical per-
manent magnet and two re-entrant pole pieces. Since the magnetic poten-
tial outside, the magnetic material satisfies Laplace’s Equation, the off-axis
magnetic potential can be expressed in terms of the potential on the
axis using Equation (3.1-1), where V(z,0) is replaced by ¢(z,0), the
magnetic potential on the axis. The magnetic flux density B in a region
of free space is proportional to the gradient of magnetic potential, and it
follows from the magnetic equivalent of Equation (3.1-3) that the radial
component of B is directly proportional to r for small ». The z component
of B, on the other hand, is nearly constant with r for small r, since the
equipotential surfaces are normal to the axis at the points where they cross
the axis.

Consider an electron that enters the lens shown in Figure 3.2-1 from the
left along a path that is initially parallel to the axis but displaced a small
distance from it. To the left of the gap the radial component of B is
directed toward the axis and, since the force acting on an electron in a
magnetic field is —e(u X B), the electron experiences a force that is
directed out of the page. This gives the electron angular momentum about
the axis, so that it crosses the z component of B as it passes through the
central region of the lens. The z component of B deflects the electron
toward the axis as it passes through the central part of the lens. Beyond
the center of the lens the lines of B have a radial component away from the
axis, and the electron loses angular velocity about the axis. We shall find
that when the electron has traveled beyond the region of field, its angular
velocity about the axis is reduced to zero. The electron therefore emerges
from the lens with a radial component of velocity, which is directed toward
the axis, and with no angular velocity. At some point beyond the lens the
electron trajectory passes through the axis.

Suppose that two electrons approach the lens along paths that are parallel
to the axis and lying in a plane containing the axis. One path is twice
as far from the axis as the second, and the radial distance from the axis to
each of the paths is small. As the electrons enter the magnetic field, the
radial component of B encountered by the outer electron is twice that en-
countered by the inner electron, so that the outer electron acquires twice
as much velocity in the 6 direction. The angular velocity of the two electrons
about the axis is therefore the same, and the outer electron crosses the z
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Fia. 3.2-1 A magnetic electron lens.
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component of B with twice as much velocity and receives twice as much
deflection toward the axis. Beyond the center of the lens, the outer electron
again experiences twice the radial component of B, this time directed away
from the axis, and loses twice as much velocity in the ¢ direction. Both
electrons therefore emerge from the lens with zero angular velocity, and,
since the outer electron received twice as much deflection toward the axis,
both are directed toward the same point on the axis. Consequently, the
trajectories to the right of the lens lie in a plane which contains the axis,
but which is rotated about the axis from the plane that contained the
trajectories to the left of the lens.

It will be helpful to develop two equations that describe the motion of an

LINES OF B\ ,~SURFACE OF REVOLUTION
/

Frc. 3.2-2 A surface of revolution which contains the electron trajectory. The axis
of the surface of revolution coincides with that of the field.
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electron as it travels through an axially symmetric magnetic field along a
path close to the axis and nearly parallel it. The electron is assumed to
have zero initial angular velocity about the axis. The first equation relates
the instantaneous angular velocity of the electron to the axial magnetic
field, and the second describes the radial motion of the electron in passing
through the field. The second equation is known as the paraxial-ray equa-
tion for magnetic fields.

Figure 3.2-2 shows a portion of a surface of revolution which contains
the trajectory of an electron that enters the magnetic field along a path
directed away from the axis. The axis of the surface of revolution coincides
with that of the field. As the electron crosses the lines of B, it experiences
a force in the 8 direction, and from Equation (1.2-5) we can write €hat

2
98 — wr(sB. — iB.) (3.2-1)
where 6 = d6/dt and 1 = e/m. Multiplying by dt, we obtain
d(r®) = nr(drB, — dzB,) (3.2-2)

Consider an incremental length of trajectory in which the electron ad-
vances a distance dz in the z direction and a distance dr in the r direction.
The magnetic flux that crosses the portion of the surface of revolution cor-
responding to the axial length dz can be expressed as

d® = 2#r(drB, — dzB,) (3.2-3)
where d® is assumed to be positive if the flux within the surface of revolu-

tion increases as z increases. Combining Equation (3.2-2) with Equation
(3.2-3), we obtain

d(r%) = 2”7d¢ (3.2-4)

Integrating this equation along the axis from a point to the left of the
lens where § = & = 0 to a point within the region of field, we obtain

24 — -
720 2‘n_':I> (3.2-5)

For small r, ® is related to the axial magnetic flux density by B, = ®/=r?,

so that

o =22 (3.2-6)
Thus the angular velocity of the electron at a given point on its trajectory

is proportional to the z component of magnetic field at that point, and when

the electron has traveled beyond the region of field, its angular velocity is
reduced to zero.
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From Equation (1.2-4), the radial force acting on the electron is given by

# —r(§)? = —mréB, (3.2-7)
Combining this with Equation (3.2-6), we obtain
2
F + (’”23’) r=0 (3.2-8)

Now for an electron traveling nearly parallel to the axis of an axially
symmetric magnetic field in a region where the electric potential is con-
stant, Equation (3.1-7) reduces to

f = 2q9Vr” (3.2-9)

where V is the potential through which the electrons have been accelerated.
Combining Equations (3.2-8) and (3.2-9) gives

r 5’77B}r =0 (3.2-10)
This is the paraxial-ray equation for electrons traveling in an axially
symmetric magnetic field when no electric fields are present. Together with
Equation (3.2-6) it describes the trajectory of an electron traveling close to
the axis of the field and nearly parallel to the axis. Since Equation (3.2-10)
is linear, any solution of the equation can be expressed as a linear com-
bination of any two other independent solutions.

Rewriting Equation (3.2-10) in the form

v = —gnBr (3.2-11)
we see that wherever B, is different from zero, r” is negative, and the
trajectory is curved toward the axis. Hence all magnetic lenses are con-
verging.

A ““weak’ lens is one for which the focal length is long compared with
the region of field. Suppose that an electron approaches such a lens along
a path that is initially parallel to the axis but displaced a small distance
from it. Integrating Equation (3.2-11) along the axis between points on
either side of the lens where the field is zero, we obtain

2
r = -8—”7 , Borde (3.2-12)
where 2 and z; are points on the axis on opposite sides of the lens and be-
yond the region of field, and .’ is the slope of the trajectory at z = 2.
If the focal length is long compared with the region of field,  will remain
nearly constant in the region of field and can be taken outside the integral



88 PRINCIPLES OF ELECTRON TUBES

in Equation (3.2-12). The focal length f for such a lens is then given by

1 22
1__r_ / B.dz (3.2-13)

1

In a magnetic lens the foeal lengths fi and f» are equal; and if the magnet
and pole pieces are symmetric about a central plane, the principal planes
are located equal distances on either side of the central plane. In the weak
lens approximation it is generally sufficient to assume that the principal
planes coincide with the mid-plane of the lens.

Fic. 3.2-3 An electromagnet lens.

Figure 3.2-3 shows an electromagnet lens with re-entrant pole pieces
that almost touch each other. In the eylindrical region of space extending
from the axis out to the pole pieces, f H-dl around any closed path is equal
to zero, and we can define a magnetic potential within the region such that
the magnetic potential difference between two points is equal to fH~dl
along any path between them.® If the cylindrical part of the pole pieces
is made of high permeability steel, so that it acts as a unipotential body,
and if the spacing between the pole pieces is small compared with the
inside radius of the pole pieces, a plot of magnetic potential along the
axis would be of similar shape to the electric potential V(z,0) plotted in
Figure 3.1-2. The axial potential therefore would be proportional to tanh
(1.322/R) + constant, where R is the inside radius of the pole pieces. The

sHowever, we must confine ourselves to a region that does not surround the coil,
since [ H-dl along a closed path which surrounds the coil is not zero, and the magnetic
potential would not be single-valued.
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axial magnetic flux density would be proportional to the gradient of this
and can be expressed as

B, =B, sechz(l'ffz) (3.2-14)

Substituting this expression in Equation (3.2-13), we obtain for the re-
ciprocal of the focal length

1_ 9., 1.322
7= SVB° /; sech“( % )dz (3.2-15)
Using the relations sech? z = 1 — tanh?z and sech? zdz = d(tanh z), we
obtain
1_9,,R (1.32z _ tanh3{1.32z) #
7 = gvbe 1.32[tamh 2 3\ R /.
~1psB 4 _np, :
8VB° 1.323 8VB°R (3:2-16)

where the points z; and 2; have been taken to be effectively at — « and
+ =, respectively. The focal length f is therefore given by

8V |4
7= 3BiR ~ 530 X 10°B.R (3:2-17)
For V' = 10* volts, B, = 10~% weber/meter?, R = 2 X 102 meter (2 cm),
the focal length f is 0.23 meter or 23 em. In prineiple, such a lens might be
used to focus the beam of a television picture tube.

If an electron trajectory on one side of a lens lies in a plane containing
the axis, the trajectory after emerging from the lens will also lie in a plane
containing the axis. However, the second plane is rotated about the axis
from the first plane. From Equation (3.2-6) the angle of rotation between
the planes is given by

¢ 2 .
ol _n [t d _ [a [ ]
o= 2./;1 Bt = 2/;1 Bzdz/dt = VSV_/, B.dz (3.2-18)

1

where {; and ¢, are, respectively, the times at which the z coordinate of the
electron is z; and 2,, and where it is assumed that 2 is very nearly constant
through the lens and is equal to 429V. If B, isin the direction of travel of
the electron, ¢ is positive. In the case of the lens described above with
V = 10* volts, B, = 1072 sech? (1.322/R) weber/meter?, and R = 2 X 102
meter, the angle 6 is 0.45 radian, or 26 degrees.

3.3 Aberrations and Deflection Defocusing Effects

Like light lenses, electron lenses have aberrations, or imperfections in
their image-forming and focusing characteristics. Figure 3.3-1 illustrates
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F1a. 3.3-1 Spherical aberration, or aperture defect.

one type of aberration common to all electron lenses and known as spherical
aberration, or aperture defect. This is one of the most serious defects of
electron lenses. Rays that pass through the lens far from the axis are
focused to a different focal point than the paraxial rays. In the figure, rays
that enter the lens along paths that are parallel to the axis and very close
to it are focused to the point ;. However, rays that are initially displaced

F16. 3.3-2 Measurements of the spherical aberration in a two-cylinder electric
lens. (From O. Klemperer, Electron Optics, 2nd Ed., Cambridge University Press,
1953)
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an appreciable distance A from the axis are focused to the point Fy/, and
rays that are initially displaced a distance 2 from the axis are focused to
the point F,"’. In electron lenses the focal point generally moves closer to
the lens for rays that are further from the axis. The effect can be accounted
for if the theory presented in Sections 3.1 and 3.2 is extended to include
higher-order terms in the expressions for the off-axis fields, and if the
angles through which the electron trajectories are deflected are no longer
assumed to be small.

Figure 3.3-2 shows experimental data concerning the spherical aber-
ration in a two-cylinder electron lens. Rays that approach the lens along
paths that are parallel to the axis and displaced a distance & from it are
deflected so that they cross the axis a distance f’ from the geometrical mid-
point of the lens. For a given semi-aperture A and focal length, the spherical
aberration is evidently less when the electrons are accelerated in passing
through the lens than when they are decelerated. To a first approximation,
the axial displacement of the focal point is proportional to the square of
the lens semi-aperture . Magnetic lenses are generally found to have less
spherical aberration than electric lenses of comparable focal length.

Suppose that in Figure 3.3-1 a screen were placed perpendicular to the
axis at F,. If the semi-aperture of the lens were 24, the rays would strike
the screen over a small circular area. Moving the screen closer to the lens
would at first cause the diameter of the circular area to decrease and later
to increase, the condition of best focus being that corresponding to mini-
mum diameter of the spot on the screen. The circular spot on the screen
at best focus is called the circle of least confusion, as in light optics. As
the semi-aperture of the lens is decreased, the diameter of the circle of least
confusion decreases, and its axial position approaches the paraxial-ray
focal point Fi.

A second type of aberration, known as chromatic aberration, is caused
by the finite distribution of electron velocities in the beam. The faster
electrons in the beam are deflected less by the lens than the slower ones.
Additional types of aberrations are encountered when an electron lens of
large aperture forms an image of an electron source of appreciable size.
Some of these aberrations have counterparts in light opties and are identi-
fied with the same names as those used in light optics. They include coma,
field curvature, astigmatism, and distortion. Magnetic lenses introduce
still other aberrations associated with the rotation of the image. Factors
contributing to the various types of aberrations encountered in electron
optics are summarized below:

1. Higher-order components in the expressions for the off-axis fields to-
gether with geometrical factors relating to the large lens aperture and large
deflection angles.
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2. The distribution of electron velocities (which leads to chromatic
aberration).

3. Space-charge effects in which the electrons are deflected by the electric
field associated with the beam itself.

4. Mechanical imperfections in the alignment or shape of the electrodes
or pole pieces.

5. In the case of magnetic lenses, inhomogeneities in the magnetic
material.

Although much can be done to minimize inherent aberrations in light
lenses by causing the geometrical and physical properties of the lens to
change with radial distance from the axis, similar corrections in electron
lenses are much harder to achieve, since the off-axis fields are directly re-
lated to the axial field. Consequently, the resolution that can be achieved
with a good electron lens is far less than can be achieved with a good light
lens.

Changes in beam shape and focusing also occur when a beam is deflected.
Figure 3.3-3 shows an electron beam that passes through a pair of deflection
plates and is incident upon a planar screen mounted perpendicular to the
axis of the undeflected beam. The undeflected beam is adjusted for best
focus on the screen, and in this condition it is incident over a small circular
region on the screen. When the beam is deflected, the spot on the screen
becomes oval in shape and of area larger than that produced by the unde-
flected beam. Four rays, which are initially at the outer edge of the beam,
are shown in the figure. Ray 1 is closest to the positive deflection plate
when the beam passes between the plates, and ray 2 is closest to the nega-
tive deflection plate. Rays 3 and 4 are at the sides of the beam. Clearly,
electrons in the upper part of the beam are in a region of higher potential
as they pass between the plates, and they will remain in the deflecting field

3-4
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Fic. 3.3-3 The deflection defocusing effect.
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for a shorter time than those in the lower part of the beam. Consequently,
electrons in the upper part of the beam will be deflected less than those in
the lower part of the beam, and rays 1 and 2 will cross at a point well in
front of the screen. Rays 3 and 4 cross over somewhat closer to the sereen
but still in front of it, since the distance to the screen is further when the
beam is deflected. The effect of the deflecting field in causing rays 1 and 2 to
cross over sooner than rays 3 and 4 is called deflection defocusing. For a given
mean angle of deflection and a given beam diameter, the difference between
the deflection of rays 1 and 2 decreases as the length of the deflection plates
increases. In applications where small deflection defocusing is particularly
desirable, relatively long deflection plates are used.

Magnetic deflecting fields also cause defocusing effects similar to those
illustrated in Figure 3.3-3. However, since the electrons maintain a con-
stant velocity in passing through a magnetic deflecting field, the deflection
defocusing for a given angle of deflection is less in a magnetic deflecting -
field than in an electrostatic deflecting field. When large deflection angles
are needed, magnetic deflecting fields are usually employed. Thus in televi-
sion tubes where the deflection angle (indicated by the angle 8 in Figure
3.3-3) may range as high as 55 degrees, only magnetic deflection will give
adequate focus of the beam over the whole screen.

In cathode-ray tubes the deflection angles are usually much smaller than
in television tubes, generally less than 15 degrees, and the defocusing result-
ing from electrostatic deflection is usually not severe. Electrostatic deflec-
tion is preferred in cathode-ray tubes for two reasons: (1) Electrostatic de-
flection requires less driving power,® and (2) better linearity between beam
deflection and the applied deflection signal can be achieved with electro-
static deflection.

3.4 The Spreading of an Electron Beam Because of Its Own Radial
Electric Field; Focusing and Confining Beams by Applied Axial
Fields

In a number of microwave tubes it is desirable to use a small-diameter
electron beam with high axial charge density. Such a beam generates a

¢To illustrate this point, consider the energy per unit volume which must be stored
in an electric field and a magnetic field in order to produce a given amount of deflection.
If the deflecting force resulting from a magnetic field B is equal to that from an electric
field E, then Beu = ¢E, and Bu = E. The ratio of the energy stored per unit volume
in the magnetic field to that stored in the electric field is (B2/2u.)/(s,B2/2) = B%*/E?
= ¢2/u?, where c is the velocity of light, and where use has been made of the relations
1oes = 1/¢¢ and Bu = E. Since c is always greater than u, more energy per unit volume
must be stored in the magnetic field in order to produce a given amount of deflection.
Furthermore, the deflecting coils are generally outside the tube so that the volume in
which the energy is stored is appreciably greater with magnetic deflection. These two
factors combine to require much higher driving powers in the case of magnetic deflection
than with electrostatic deflection.
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radial electric field, which in the absence of other applied fields causes the
beam to spread, the off-axis electrons being deflected away from the axis.
Usually it is desirable to prevent the beam from spreading, and this can be
accomplished in several ways: (1) By directing the beam into a region of
uniform axial magnetic field of sufficient intensity, (2) by directing the beam
along the axis of a series of equally spaced magnetic or electric lenses of
suitable strength, or (3) by directing the beam along the axis of a bifilar
helix with the two windings at different potentials. We shall first describe
the spreading of an electron beam because of its radial electric field. Later
we shall consider the use of axial magnetic and electric fields to prevent
the beam from spreading.

The axial linear charge density of a beam of current I, amperes and elec-
tron velocity u, meters per second is I,/u, coulombs per meter. From Equa-
tion (1.4-5) the radial electric field intensity at the surface of the beam is

I,
T 2meru,

E, =

(3.4-1)

where r is the beam radius. For a beam current of 10 ma, a beam diameter
of 1 mm, and a beam voltage” of 1000 volts, Equation (3.4-1) indicates a
radial electric field intensity at the surface of the beam of 19 kv/meter, or
19 volts/mm.

If the beam in the above example passed concentrically within a conduct-
ing cylinder of inside diameter 2 mm, the potential at the surface of the
beam would be 6.6 volts less than that of the cylinder; and if the charge
density across the beam were uniform, the potential at the center of the
beam would be 11.4 volts less than that of the cylinder. However, in prac-
tice, the beam generates positive ions as a result of collisions between the
electrons in the beam and molecules of residual gas in the tube. Since
the radial field of the beam acts on the ions with a force directed toward the
axis, the ions are entrapped by the beam. (The kinetic energy of the ions at
the time they are generated is usually a small fraction of an electron volt,
and this is not sufficient to overcome the potentials resulting from the radial
field of the beam.) The trapping of ions by the beam in turn reduces the net
axial charge density and thereby reduces the radial electric field. Generally,
the ions tend to “drain” in the axial direction, since in most cases there is a
region of lower potential at at least one end of the beam. The extent to
which the beam charge is neutralized is therefore determined in part by the
potential gradients along the axis of the beam and in part by the resid-
ual gas pressure within the tube.

Hines et al.? describe experimental measurements of the ion neutralization

"The net voltage through which the electrons have been accelerated.
8Reference 3.6.



BEAMS AND LENSES 95

of a beam having a current of 14.5 ma, a length of 17 cm, and a beam voltage
of 950 volts. An axial magnetic field of 0.075 weber/meter? (750 gauss) was
used to focus the beam. (See later in this section for focusing with magnetic
fields.) The ions drained toward one end of the beam only, the potential
at the other end being higher than that of the main portion of the beam. It
was concluded that the beam was about 14 per cent neutralized with ions at
a tube pressure of 10~ mm of Hg, 50 per cent neutralized at a tube pressure
of 107® mm of Hg, and nearly fully neutralized at a pressure of a few
times 107 mm of Hg. Pressures of the order of 107 to 10~ mm of Hg might
be typical of those attained in a beam-type microwave tube.

If there is no neutralization of the electron space charge by ions, the radial
motion of the electrons at the outer edge of the beam as a result of the radial
electric field intensity is described by the equation

d d¥r el,

M = MU= = —ek, =
* dz? T 2meqru,

o (3.4-2)

If u, is constant, this equation can be solved with the aid of tabulated
functions.® The results are plotted in Figure 3.4-1 for the case of a beam in
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Fic. 3.4-1 The universal beam spread curve.

which the electron trajectories are assumed to be initially parallel to the
axis. The plot shows the radius r of the beam as a funection of distance z
along the beam, the initial radius being r,. The curve is sometimes called
the universal beam spread curve. If the current density over the beam
cross section is initially uniform, the radial field will deflect the trajectories

*Reference 3.7, p. 443.
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of electrons in the interior of the beam by an amount proportional to their
initial distance from the axis, and at points further along the beam, the
current density over the beam cross section will still be uniform.

For a 10-ma, 1000-volt beam of initial diameter 1 mm in which the
trajectories are parallel to the axis at z = 0 and in which no ion neutraliza-
tion takes place, the beam diameter would be 1.8 mm one centimeter
further along the axis and 9 mm four centimeters along the axis. With
partial ion neutralization the spreading would be less.

In traveling-wave tubes the electron beam must travel inside a long
cylindrical ‘region defined by the slow-wave circuit of the tube with es-
sentially no interception of the beam by the slow-wave circuit. Often the
slow-wave circuit consists of a wire helix of length perhaps 70 to 250 times
its inside diameter. For the beam to travel inside such a slow-wave circuit,
additional fields must be applied to prevent the beam from spreading.
Several methods for doing this, involving the use of axial electric or mag-
netic fields, are considered under separate headings below."

(a) A Uniform Axial Magnetic Field

Figure 3.4-2 shows a magnetic circuit which produces a long region of
uniform magnetic field parallel to its axis. An electron gun is located within
the left-hand pole piece and, because the pole piece acts as a magnetic shield,
there is essentially zero magnetic field in the region of the gun. We shall
assume that the transition along the axis from the region of zero magnetic
field to the full magnetic field takes place over a very short axial distance.
Suppose a single electron approaches the transition region from the side of
zero magnetic field along a path which is initially parallel to the axis but dis-
placed a distance r, from it. In passing through the transition region the
electron acquires an angular velocity about the axis, which from Equation
(3.2-6) is given by

B,

g =122

5 (3.4-3)

A4 first thought it might seem that the beam diameter could be adequately limited
by establishing a high enough gas pressure in the tube that the electron charge would
be almost fully neutralized by ion charge. However, there would always be a small
excess of electrons in the beam and hence a small radial field, since otherwise the ions
would be free to escape. This small radial field would cause too much spreading of the
beam for most traveling-wave tube applications. Furthermore, higher gas pressures
result in greater ion bombardment of the cathode and shorter cathode life. High ion
densities also result in mechanical oscillation of large numbers of the ions within the
potential well formed by the electron beam. The ion motion modulates the beam and
tﬁerebg causes a type of noise, called ion oscillation noise, to appear in the output of
the tube.
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Fie. 34-2 An electron beam directed into a region of uniform magnetic field

where B, is the uniform axial magnetic field, and » = ¢/m. If the electron
passes through the transition region sufficiently quickly, it will still be at
distance r, from the axis upon entering the region of uniform axial field.
Its velocity in the 8 direction therefore will be

7B,
°2
This transverse velocity causes the electron to cross the lines of axial mag-

netic field, so that the motion of the electron in the transverse plane is
circular with radius

U =T =71

(3.4-4)

=% _ T _5)
r_nB, 5 (3.4-5)

The electron therefore travels through the uniform magnetic field in a
helical path of radius r,/2, and since it initially started at distance r, from
the axis, with velocity only in the 8 and z directions, it periodically passes
through the axis and returns to its original radius r,. Interestingly enough,
this result is independent of the magnitude of the axial magnetic field, the
initial electron velocity, or the initial distance of the electron from the axis.
The time taken for the electron to complete one turn of its helical path is
w1 o/Us, 80 that the points at which the electron passes through the axis are
separated by an axial distance given by
o 27

A = Uy ™ = uzn—B‘ (34.-6)
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Suppose a cylindrical electron beam of very low axial charge density is
directed along the axis of the magnetic circuit shown in Figure 3.4-2. We
shall assume that the axial charge density is sufficiently small that the radial
electric field of the beam exerts a much weaker transverse force on the off-

_ - POSITION OF ELECTRON AT
%~ THE TIME OF ENTRY INTO
THE MAGNETIC FIELD

~~~_.BEAM ENVELOPE AT THE
POINT OF ENTRY TO THE
MAGNETIC FIELD

Fic. 3.4-3 The broken line shows the beam envelope at the time the beam is launched
into the magnetic field. The motion of individual electrons in the transverse
plane after entering the magnetic field is shown by the solid lines.

axis electrons than the force exerted by the magnetic field. In such a beam,
electrons which travel along paths that are parallel to the axis just before
entering the magnetic field follow helical paths in the region of uniform
magnetic field with one side of the helical path touching the axis. Each
electron passes through the axis at points spaced by a distance A, the first
point being \./2 beyond its point of entry into the magnetic field. Figure
3.4-3 shows the motion of the electrons in the transverse plane. Since
all the electrons pass through (or close to) the axis at nearly the same
points, the beam envelope necks down from its initial radius to a very small
radius at a point \./2 beyond the point of entry into the magnetic field and
each )\, thereafter. The beam envelope therefore resembles that shown
in Figure 3.4-2 and is said to be “scalloped.” For a 1000-volt beam and
B, = 0.05 weber/meter?, A, = 1.3 cm.

Since electrons that enter the magnetic field with large r, have greater
kinetic energy in the transverse plane than those that enter with small r,
and since all electrons in the beam have essentially the same total kinetic
energy, the outer electrons will have slightly smaller axial velocity in the
region of uniform magnetic field. The total kinetic energy of an electron in
the region of uniform magnetic field can be expressed as

Vo = m(u® + w?) = jml(rmB./2)" + us’] (3.4-7)
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where V, is the voltage through which the electrons have been accelerated.
Clearly, an electron that enters the magnetic field with large r, will have
smaller u,, and hence smaller A;, in the region of uniform magnetic field
than one that enters with small r,, Consequently, the outer electrons in the
beam will gradually slip behind the inner electrons, and the envelope will
be only quasi-periodic in the axial direction.

As the axial charge density of the beam is increased, so that the transverse
force from the radial electric field becomes comparable with that resulting
from the axial magnetic field, the electron motion is appreciably modified.
Brillouin has described an exact solution for electron flow in an axial mag-
netie field in which the outward force resulting from the radial electrie field
of the beam is balanced by the inward force of the axial magnetic field. The
conditions required for Brillouin flow are difficult to achieve in practice, but
the solution defines a value of magnetic flux density in terms of the beam
current, the beam voltage, and the beam diameter, and it is often helpful to
measure the field actually needed to confine a beam to a given diameter in
terms of this field.

To obtain Brillouin flow, the following conditions must apply at the point
of entry of the beam to the region of uniform magnetic field:

1. The beam must have a uniform current density across its diameter.

2. The electron trajectories must be parallel to the axis just before
entering the magnetic field.

3. The transition from zero axial magnetic field to the full field must
ocecur over a very short axial distance.

4, The beam axis must coincide with that of the magnetic field.

In addition, there must be no trapping of ions by the electron beam.

In Brillouin flow an electron which enters the magnetic field at distance »,
from the axis experiences a radial force which is just sufficient to keep it
moving in a helical path of radius 7, about the axis of the beam. The trans-
verse force of the magnetic field must then be sufficient to account for the
radial acceleration of the electron when moving in a helical path of radius r,
plus the force resulting from the radial electric field at radius r,. The axial
magnetic field is therefore determined by the relation

2
B.ous = ’”r“" — B, (3.4-8)

o

If the beam radius is ¢ and if the current density is uniform across the beam
cross section, we can use Equation (3.4-1) to express the second term on the

Reference 3.8.
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right as
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(3.4-9)

where V, is the voltage through which the electrons have been accelerated.
Combining Equations (3.4-4), (3.4-8), and (3.4-9), we obtain

B \2I, _ 0.69 X107,

# 7'.60.,’3/2V°1/2a2 V01/2a2

(3.4-10)

This equation gives the magnetic flux density required for Brillouin flow.
Since it is independent of the radius r,, the same magnetic field applies to all
electron trajectories for which r, < a. For a 10-ma, 1000-volt beam of
diameter 1 mm, the Brillouin magnetic flux density is 2.95 X 10~*weber/
meter?, or 295 gauss.

In Brillouin flow the beam envelope maintains a constant diameter
through the region of longitudinal magnetic field, the individual electrons
following helical trajectories which are concentric with the beam axis, and
the beam as a whole twisting about its axis with angular velocity § = 7B ./2.
In a thin “cross-sectional slab’”’ of the beam the individual electrons main-
tain their positions relative to each other, and the slab as a whole rotates
about the axis with angular velocity 4.

However, in practice, the axial charge density of the beam will be partial-
ly neutralized with ions. In this case the transverse force resulting from a
magnetic field equal to the Brillouin field would predominate, so that the
electrons would periodically pass near to the axis, and the beam envelope
would be scalloped. Furthermore, most convergent electron guns'? give rise
to sufficiently high transverse velocities that the maxima in the diameter of
the scallops would be somewhat larger than the beam diameter at the point
of entry into the magnetic field. (This point is further discussed in Refer-
ence 3g.) However, it is found that by increasing the magnetic field, the
maximum diameter of the scallops can be reduced. Often a magnetic field
equal to 13 to 3 times the Brillouin field is used.

As the magnetic field is increased appreciably above the Brillouin value,
the transverse force resulting from the magnetic field becomes the principal
transverse force acting on the electrons. Harker' and Ashkin'4 have con-
cluded on the basis of experimental measurements that with a magnetic
field greater than, or equal to, about three times the Brillouin field, the
effects of the radial electric field can be neglected, and a majority of the

12Guns which generate a beam of smaller diameter than that of the cathode.
15Reference 3.10.
14Reference 3.11.
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Fia. 3.4-4 Measurements of the beam interception by the slow-wave circuit of a

traveling-wave amplifier as a function of the applied axial magnetic flux density.

The beam was generated by the electron gun illustrated in Figure 4.5-1(a). (From

J. P. Laico et al., Bell System Tech. J. 35, 1285, 1956. Reprinted by permission of
American Telephone and Telegraph Company)

electrons pass through, or very close to, the beam axis. In this case an
electron that enters the magnetic field at distance r, from the axis travels in
a nearly helical path of radius 7,/2 and periodically passes through or close
to the axis.

Figure 3.4-4 shows measurements of the fraction of the beam current
intercepted on a helix-type slow-wave circuit of a traveling-wave amplifier
as a function of the applied axial magnetic flux density. The data are
plotted for several values of beam current. The helix had an inside radius of
1 mm and a length of 17 cm. The electron gun was similar to that shown in
Figure 4.5-1(a). A plot of current density vs. radius for the electron beam
at the point of entry into the magnetic field is shown in Figure 4.5-4. An
electron emitted from the edge of the cathode with zero emission velocity
in the direction parallel to the cathode surface arrives at the point of entry
into the magnetic field at a radius of 0.45 mm from the beam axis. However
other electrons emitted from the edge of the cathode with relatively high
emission velocity parallel to the cathode surface arrive at the point of entry
into the magnetic field at distances from the beam axis as high as 0.7 to
0.8 mm.

Figure 3.4-4 shows that with increasing beam current, a higher magnetic
field was required to prevent interception of the beam by the helix, as would
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Fig. 3.4-5 The data for Figure 3.4-4 are plotted vs. the ratio of the actual magnetic
flux density to the Brillouin flux density for a beam of uniform current density and
a radius of 0.45 mm.

be expected from Equation (3.4-10). Figure 3.4-5 shows the same data
plotted as a function of the ratio of the actual magnetic flux density to the

Brillouin flux density for a beam of uniform current density and radius
0.45 mm.

(b) Confined Flow®

A type of electron flow, known as confined flow, is achieved with the
electron gun entirely immersed in the magnetic field. Often a uniform axial
magnetic field is used. The cathode of the electron gun might consist of a
planar disc which is perpendicular to the field, whereas the accelerating
electrode would have an aperture somewhat larger than the cathode diame-
ter. An electron gun that is used with confined flow (and has several ac-
celerating electrodes) is illustrated subsequently in Figure 4.5-1(c).

1sReference 3b, p. 161.
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If the magnetie field lines are parallel to the beam axis over the entire
length of the beam, starting at the cathode, the beam diameter obtained
with confined flow is always larger than the cathode diameter, but it
decreases and asymptotically approaches the cathode diameter as the mag-
netic field intensity is increased. With increasing magnetic field the elec-
trons increasingly tend to follow the field lines, and the motion of an
individual electron in the transverse plane becomes limited to a smaller and
smaller area, the motion being nearly circular.

With confined flow the magnetic field required to confine a given beam
current to a given diameter is always greater than that needed when the
beam is generated outside the magnetic field and injected into it, as de-
scribed in Section (a) above. Confined flow has found its chief application
in low-noise microwave amplifier tubes, where the magnetic field in the
region of the potential minimum reduces the transverse motion of the elec-~
trons and thereby effects a reduction in the noise generated by the beam.

Confined flow also can be achieved with a convergent electron gun by es-
tablishing in the region of the gun a magnetic field that converges in the
same manner as the electron trajectories in the absence of the magnetic
field. In this case the electrons “follow the magnetic field lines” through the
accelerating region of the gun, and in the region beyond the gun their mo-
tion is much as described above. -

(c) Focusing with Periodic Magnetic Fields

A series of equally spaced lenses also can be used to focus an electron
beam. In this case the off-axis electrons experience a radial impulse, which
is directed toward the axis, as they pass each lens. The impulses deflect the
electrons toward the axis, but between lenses the beam again spreads be-
cause of the radial electric field due to the space charge. For a particular
condition of lens strength and spacing and for a particular average beam
radius, the impulses from the lenses just balance the integrated radial out-
ward force resulting from the space charge of the beam, and the beam diam-
eter at successive lenses remains constant. The shape of the beam envelope
is then somewhat as illustrated in Figure 3.4-6. Focusing an electron beam

LENS LENS LENS LENS

F1e. 3.4-6 The focusing action of a series of equally spaced lenses.
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F16. 3.4-7 The use of a periodic focusing

structure reduces the weight of magnetic

material needed to produce a given mag-

netic field over a given axial distance.

(From J. T. Mendel ¢t al., Proc. IRE 42,
800, 1954)
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with a series of equally spaced lenses
is called periodic focusing, since the
axial field varies periodically in the
2 direction.

The stability of periodic focusing
can be made plausible by noting that
if the beam radius increases above
that needed to obtain the balance
condition, the radial impulses re-
ceived from the lenses predominate,
and the off-axis electrons receive a
net deflection toward the axis. On
the other hand, if the beam radius
becomes less than that required for
balance, the radial outward force
predominates and the beam expands.

Periodic focusing can be achieved
with both electric lenses and mag-
netic lenses. When magnetic lenses

" are used, the axial fields of succes-

sive lenses are usually reversed in
direction, and in this way a substan-
tial reduction in magnet weight can
be achieved over that of a permanent
magnet or electromagnet which
would produce a uniform axial focus-
ing field.®® To explain this, we might
first note that the magnetic circuit
shown in Figure 3.4-2 establishes a
magnetic field throughout a far
larger volume than that occupied by
the beam, and, since the total weight
of the magnet material is closely
related to the magnetic energy
stored in the space surrounding the
magnet, much of the weight of the
magnet would appear to be wasted.

Figure 3.4-7 illustrates how weight can be saved using a periodic perma-
nent magnet circuit. The magnetic circuit shown in Figure 3.4-7(a) is as-
sumed to produce a uniform axial magnetic field over the length of the

16Reference 3.12.
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magnet. By increasing all the linear dimensions of the circuit by a factor of
3, as in the magnetic circuit shown in part (b) of the figure, the length of the
axial magnetic field is increased by three times, but the magnitude of
the axial field remains unchanged. The larger magnet weighs 33 = 27
times as much as the smaller magnet, and the energy stored in the space
surrounding it is 27 times as great. On the other hand, three of the smaller
magnets placed end for end with like poles together (i.e., north beside north
and south beside south), as in the assembly shown in Figure 3.4-7(c), have
1/9 the weight of the larger magnet and produce approximately the same
axial field over the same axial distance, but with two reversals in direction.
The energy stored in the space surrounding the three magnets in Figure
3.4-7(c) is approximately 1/9 that stored in the space around the larger
magnet, since the leakage fields extend only 1/3 as far from the axis.

If the larger magnet were replaced with n smaller permanent magnets of
the same total overall length and axial magnetic field, the weight of the
periodic circuit would be 1/n? times that of the larger magnet. However, in
practice the reversals of the axial field are not really abrupt and, in order to
achieve adequate focusing of the beam, a somewhat higher peak magnetic
field must be used. This requires the magnets of the periodic structure to be
somewhat heavier, and consequently the weight of the periodic circuit
needed to focus a given beam is between 1/7? and 1/n that of a single
permanent magnet which would focus the beam with a uniform axial field.

Periodic structures also have the advantage of much smaller leakage
fields and hence less likelihood of interference with nearby devices or
equipment.

Let us now examine the electron motion in a periodic magnetic field.
Equations (3.1-4) and (3.2-8) can be combined to give an equation that
describes the radial motion of an electron in the presence of both an axial
magnetic field and a radial electric field, namely

d*r nB,\? av
TE + (—2—) r=mg- = 0 (3.4-11)
Suppose the axial magnetic field varies as a cosine function, so that
B, = B, cos ? (3.4-12)

where L is the magnet period, or twice the center-to-center distance between
adjacent pole pieces. Substituting for dV /dr = —E, from Equation (3.4-1),
setting z = u.t, and combining Equations (3.4-11) and (3.4-12), we obtain
the following equation for the motion of an electron at the surface of the

beam:
Fr | (vBe 2w\l 1_
dz? + (2u, cos -7, )r el r 0 (3.4-13)
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Tt is convenient to make a change of variables and rewrite this equation in
the form

de T 4 a(l + cos2T)s — 9 -0 (3.4-14)
where

r 27z
=7 =T
_ 1fnB.L (B2L?
a_2(4ruz> = 2.79 X 108—— V.

g LD _ 3L
T Regrtutat |V ila?

and where use has been made of the relations u.2 = 29V, and 2 cos? T = 1

(a)
INSUFFICIENT
MAGNETIC FIELD
o =0.15
A =o0.2

(b}
CORRECT
MAGNETIC FIELD
=02
B =02

(c)
EXCESS
MAGNETIC FIELD
=04
A=o0.2

a

F1c. 3.4-8 The shape of the envelope of a beam for three conditions of the magnetic
field parameter a. The small ripples on the beam are associated with the pole
piece spacing L/2. (From J. T. Mendel et al., Proc. IRE 42, 800, 1954)
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+ cos 2T. The beam radius at the point of entry into the magnetic field is
assumed to be a.

Solutions to Equation (3.4-14) have been obtained with the aid of an
analog computer! for the case in which: (1) The electron flow is “laminar,”
that is, the electron trajectories do not cross one another; and (2) the cur-
rent density across the beam cross section is uniform. (Also implicit in
Equations (3.4-13) and (3.4-14) is the assumption of no ion neutralization.)
The shape of the beam envelope as determined by the computer for three
values of the axial magnetic field is shown in Figure 3.4-8. The computer
results show that minimum beam ripple is obtained when « = 8 or

Bims? = 0.69 X 10“’% (3.4-15)
where Bems = Bo/\2. It will be noted that the right-hand side of this
equation is the same as that of Equation (3.4-10), which gives the Brillouin
field needed to focus a beam of current I,, voltage V,, and radius a. Thus
for a sinusoidally varying field the rms value of the magnetic field must
equal the Brillouin field. This result is perhaps not surprising, since the
radial force resulting from the axial magnetic field is proportional to B2,
and with a sinusoidal field such that Brms = Bapritiouin, the average radial
force from the magnetic field is the same as with Brillouin flow.

By setting 8 = 0 in Equation (3.4-14), the equation reduces to a form of
Mathieu Equation® that is characterized by solutions for ¢ which are
periodic in 7 for certain ranges of a, and which are unstable for other ranges
of a. Figure 3.4-9 shows the ranges of « for which the solutions are stable.

| UNSTABLE UNSTABLE

A\ | \| =
)\ N |

0.66 1.72 3.76 6.1

Fic. 3.4-9 The regions in which Equation (3.4-14) is unstable when 8 = 0.

The significance of this is that, if we reduce the beam current I, to a vanish-
ingly small value, so that 8 — 0, but maintain constant beam voltage,
there will be some values of the parameters B,, L, and V, for which the
beam will be focused by the lenses and others for which ¢ = r/a will be un-
stable and the beam will become divergent. Furthermore, it is found®
that even with higher beam currents the periodiec structure transmits prac-
tically no current in the regions marked ‘“‘unstable” in Figure 3.4-9.

17Reference 3.13.
18Reference 3.14.
18Reference 3.13.
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In practice, most periodic circuits are designed to operate in the first
“pass band” in Figure 3.4-9, corresponding to « < 0.66. To determine the
value of B, that should be used, the beam is first focused with a solenoid
which produces a uniform axial field, and the minimum value of B, which
gives good beam transmission is measured. The value of B, for the periodic
circuit is then taken to be approximately 2 times this field (assuming that
the axial field is to vary in a nearly sinusoidal manner). The period L of
the periodic cireuit is then determined so that e is less than 0.66, perhaps
30 per cent less. For B, = 0.08 weber/meter? (or 800 gauss), and a beam
voltage of 1500 volts, a period L of 1.92 em gives an a of 0.44. Reference
3.15 describes the design of the pole pieces and permanent magnets for a
periodic circuit.

(d) Periodic Focusing with Electric Fields

Tien? has described the focusing of an electron beam using a periodic
electric field. Such a field might be obtained with a series of ring electrodes
as illustrated in Figure 3.4-10(a) or a bifilar helix such as that illustrated in
Figure 3.4-10(b). In both cases the outer electrons experience a relatively
strong force toward the axis when they are close to the electrodes at the

N N

7, N\ N
v, Vs v, V,
@) ;> v, (b) v,>v,

Fig. 3.4-10 Periodic focusing of a beam with electric fields: (a) with a series of ring
electrodes, and (b) with a bifilar helix.

lower potential and a somewhat weaker outward force when they are
opposite the electrodes at the higher potential. Also, their axial velocity is
less when they experience the inward force than when they experience the
outward force. Consequently, there is a net focusing effect that can be
used to balance the outward force of the radial electric field of the beam.
As in the case of periodic focusing with magnetic fields, the beam radius is

#Reference 3.16.
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found to be stable for some values
of the focusing parameters, whereas
for others it becomes divergent.
Tien pointed out that the bifilar
helix also can be used as the slow-
wave circuit of a traveling-wave
amplifier. Such a tube has been de-
veloped by RCA.# The helix struc-
ture of the RCA tube isillustrated in
Figure 3.4-11. The length of the
helix is 22 cm. Figure 3.4-12 shows
measurements of the per cent beam
current intercepted by the helix as
a funection of the voltages applied
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F1a. 3.4-11 The bifilar helix used in an

electrostatically focused traveling-wave

amplifier developed by RCA. (Courtesy
Radio Corporation of America)

to the helix. It can be seen that good focusing is achieved over a range of

helix voltages.
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Fia. 3.4-12 Beam interception on the helix structure illustrated in Figure 3.4-11

v8. (Vo — V1)/Vave, where Vi and V, are the voltages applied to the two helices and

Vave = (V14 V2)/2. (From D. J. Blattner and F. E. Vaccaro, Electronics 32, No. 1,
46, 1959. Copyright by Electronics, a MeGraw-Hill Publication)

2AReference 3.17.
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PROBLEMS
ELECTRON
//TRAJECTORY
D 1
——] ’____*.——r-"”
' e R

Problem 3.1

3.1 The figure shows an electrode with a small aperture in it. To the left of the
electrode there is a uniform potential gradient E.. An electron approaches the ap-
erture from the left along a path parallel to the axis of the aperture but displaced
a small distance from it. As the electron passes through the aperture, the diverging
field deflects it away from the axis. Show that the field in the region of the aperture
acts as a diverging lens with focal length approximately equal to 4V,/E., where V,
is the potential through which the electron has been accelerated at the time it passes
through the aperture. Assume that the electron’s velocity is sufficiently large when
it reaches the aperture that the electron remains at nearly constant distance from
the axis as it passes through the aperture, and the effect of the radial field is to give
the electron an outward impulse.

3.2 A single turn of wire which conducts a current I, generates an axially sym-
metric field which can be used as a magnetic lens. Using the expression given in
Equation (3.2-13) for the focal length of a weak lens, show that

= 266V.R  98V.R
- 3mquotl,r I
for such a lens, where R is the radius of the turn, and V, is the beam voltage.

3.3 Sketch a magnetic lens that produces no net rotation of the beam.

3.4 Figure 3.3-3 shows a cylindrical beam of electrons that passes between two
parallel deflection plates and is deflected through a mean angle . However, be-
cause of deflection defocusing effects, electrons at the upper side of the beam are
deflected through a slightly smaller angle, which we shall assume to be § — A9,
and electrons at the lower side of the beam are deflected through an angle 8 | Ag.
Show that for a given beam diameter and given angle 8, the incremental angle Af
is inversely proportional to the length of the deflection plates. Assume that the
field between the deflection plates is uniform, and that the effects of fringing fields
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at the ends of the plates can be neglected. (Actually the fringing field at the exit
end of the deflecting plates has the effect of reducing the deflection defocusing.)

3.5 Two apertured electrodes, one at higher potential than the other, form an
electric lens. An electron beam passes through the lens in the direction of increasing
potential. The electrode at lower potential has a wire grid across its aperture and
is in contact with the grid. The wires of the grid are laid in two directions at right
angles 80 as to produce a fine mesh. Show qualitatively that a beam passing through
the lens experiences a diverging action. Note that this does not contradict the
statements made in section 3.1 about axially symmetric fields acting as converging
lenses.

3.6 Show that with Brillouin flow all the electrons of the beam have the same axial
velocity, equivalent to that produced by an accelerating potential equal to the
potential on the beam axis.
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