Chapter 8

MICROWAVE COMPONENTS AND CIRCUITS

We have discussed in the previous chapter some of the high-frequency
effects which occur in grid-controlled tubes. Lead inductances, inter-
electrode capacitances, conductor resistances, beam loading, and electron
transit-time effects contribute deleteriously to the performance of high-
frequency, grid-controlled amplifiers. As will be noted later in this chapter,
conductor resistance losses actually worsen with increasing frequency due
to an effect known as “‘skin effect.” Furthermore, as frequency increases,
it is possible for lead wires to have lengths comparable with a wavelength,
in which case they can act as antennas and radiate electromagnetic energy.
These considerations lead one to abandon the wires and lumped components
used at lower frequencies and to seek new and more appropriate components
for microwave frequencies.

Let us first consider the evolution of the tuned circuit as the resonant
frequency is inecreased into the microwave range. At low and moderate
frequencies, lumped-constant resonant circuits, such as the one illustrated
schematically in Figure 8-1(a), are frequently used in electronic circuitry.
The resonant frequency is given by f = 1/2x+LC, where L is the induct-
ance, and C is the capacitance. In a tetrode amplifier circuit, for example,
an inductance L may be used to resonate with the interelectrode and stray
capacitances of the output cireuit so as to give maximum gain at a partic-
ular frequency.

As the operating frequency is increased, both the capacitance and in-
ductance could be decreased in order to maintain resonance at the operating
frequency. However, for the case of the tetrode amplifier, a limiting value
of the capacitance is soon reached for two practical reasons. First, transit-
time effects set a limit to how far the electrodes can be pulled apart. Second,
the area to which the beam cross section can be reduced may be limited
by (1) the maximum allowable cathode current density or (2) considerations
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(a)

(c)
Tie. 8-1 Evolution of a cavity resonator from its low-frequency prototype. (a)
Low-frequency prototype. (b) Inductance decreased to that of a single turn wire.

(c) Single wires in parallel, reducing the inductance further. (d) Cavity resonator
resulting from a continuation of the process of Figure 8-1(c).
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(a)

relating to beam spreading and confining the beam with external fields,
as diseussed in Section 3.4. This determines a minimum area for the elec-
trodes. As the frequency is further increased, therefore, one must resort
to reducing the inductance. However, we soon reach the point where the
inductance is a single short wire, as shown in Figure 8-1(b). Still higher
resonant frequencies can be obtained by paralleling the single wire with
additional single-wire inductances, as indicated in Figure 8-1(c). As
this procedure is carried to the limit, one obtains the re-entrant cavity
structure shown in Figure 8-1(d). A cross-sectional view of such a cavity
is shown in Figure 8-2. Such resonant cavities are used in klystrons and
microwave triodes and tetrodes. Not only has the inductance been de-
creased in the resonant cavity, but also the resistance losses are lessened,
and the self-shielding configuration prevents radiation losses. The fact that
all of the electromagnetic fields are confined to the interior of the cavity
will become more obvious after a discussion of “‘skin effect.”

To calculate the resonant frequency of a cavity such as that shown in
Figure 8-2 is often a difficult process.! However, approximate calculations

IReferences 8.1, 8.4.
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can often be made to obtain useful

information. For instance, we note T_T

that in the cavity shown in Figure i

8-2, the capacitive gap is short com- ]

pared with its diameter. Thiscavity § [/ é

may be thought of as two shorted i
coaxial lines joined by a capacitance. _ﬂ=:‘.t h

It can be shown that the input im- |

pedance to each shorted coaxial line |

is given by the expression? ’:Z

. i

Zi,,=-2‘7—1r é‘:"ln%tan%l (8-1) b 1 4

e -2 -~
where ¢ = 1/4u., is the velocity of ke 2a-
light. The capacitance of the gapis Fic. 8-2 Re-entrant cavity resonator
given by the expression which _can b'e analyzed by simple
\ transmission l{ne .theory. The cavity
c, = Ea;l;b (8-2) is airfilled.

where fringing effects are neglected. At resonance, the inductive reactance
of the two shorted coaxial lines in series is equal in magnitude to the capac-
itive reactance of the gap, but of opposite sign. Hence,

I (Bl 1n® tan @ — 2 ;
T\/; (ln b) tan — s 0 (8-3)
The solution to this equation gives the resonant frequency. Rearranging
the equation, we obtain

wl wl hl
—tan — = p
b2 ln 5

¢ ¢ (8-4)

For the particular set of dimensions given by a =, h = 0.0318/, and
a = 4b, Equation (8-4) is satisfied by wl/c = 0.571, and we can scale the
dimensions to suit any frequency. At 3000 Mc, ! is equal to 0.91 cm. This
sort of scaling operation is a general property of microwave components.
That is, if we multiply all dimensions by a factor K, all frequencies of
interest are divided by K.

In the above example, the solution wl/c = 0.571 is equivalent to saying
that I is 0.0908 wavelength long. It can be shown that averaged over a
cycle, a shorted coaxial line of this length contains 8.84 times as much

2Reference 8.2.
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magnetic stored energy as it contains electric energy. The balance of the
electric stored energy appears in the gap, since at resonance the electric
and magnetic stored energies are equal in magnitude (but 90 degrees out of
time phase). The region outside of the gap is called the inductive region
of the cavity, and to a good approximation it can be considered to have
only magnetic fields. The cavity can therefore be represented by the equiv-
alent circuit of Figure 8-1(a), where the capacitance C is the gap capaci-
tance, and the inductance is chosen to give the correct resonant frequency.

Since Equation (8-4) contains the tangent function, it has an infinite
number of solutions with larger values of frequency. Physically, this
corresponds approximately to additional half wavelengths on the coaxial
line at higher frequencies. This behavior is typical of all microwave
cavities; that is, there are an infinite number of resonant frequencies or
modes of oscillation. However, resonant cavities are nearly always operated
in the lowest frequency, or dominant, mode because the resistive losses are
usually lower in that mode. Resistive losses in the cavity can be repre-
sented in the equivalent circuit of Figure 8-1(a) by a parallel resistance of
such a value as to give the correct power loss per cycle for a given amount of
stored energy.

Next let us consider the problem of transmitting microwave energy
from one point to another with as little resistive and radiation losses as
possible. Radiation losses can be kept to a minimum by using a suitable
form of transmission line, such as a coaxial line, stripline, or a waveguide.
Of these types of transmission line, the waveguide is capable of giving
minimum attenuation per unit length at a given signal frequency, and it is
the most commonly used form of transmission line at microwave fre-
quencies. A study of wave propagation in a waveguide provides a suitable
introduction to a discussion of wave propagation along other forms of
transmission line such as are used in microwave tubes.

Our principal mathematical tool for studying the transport of electro-
magnetic energy from one point to another is a set of equations, known as
Mozwell's Equations. These equations can be used to describe electro-
magnetic wave propagation in free space, and in principle they can be used
to describe electromagnetic wave propagation along an arbitrarily shaped
transmission line. We shall first consider the plane electromagnetic wave
in free space and then show that electromagnetic wave propagation in a
waveguide can be considered as a superposition of two plane electromag-
netic waves.

Suppose the direction of propagation of a plane electromagnetic wave is
taken to be the z direction. With proper choice of the rectangular coor-
dinate system, the wave consists of an electric field component E. and a
magnetic field component H,, both of which vary sinusoidally in the 2z
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direction with wavelength A, = ¢/f, where ¢ is the velocity of propagation,
and f is the frequency of the signal. For a plane wave in free space I, is
related to E, by H, = (\e,/u.)E.. The power density flowing in the 2z
direetion is equal to |E .| |H,| watts per square meter of wave front.
Figure 8-3 shows the field lines associated with two plane waves of equal
amplitude. One wave is propagating upwards and to the right with velocity

——» MAGNETIC FIELD LINES
[o] ELECTRIC FIELD LINES COMING OUT OF PAGE
® ELECTRIC FIELD LINES GOING INTO PAGE

Fic. 8-3 Two plane waves. One is advancing upwards and to the right with veloc-
ity ¢, and one is advancing upwards and to the left with velocity c.

¢, and one is propagating upwards and to the left with velocity ¢. Each
wave front makes an angle 6 with the vertical, or 2, direction. Maxwell’s
Equations are linear, so that the field pattern resulting from a super-
position of the two waves is obtained by a vector addition of the individual
field components. Figure 8-4 shows the field pattern which results from
this vector addition.

The field pattern of Figure 8-4 moves only in the z direction. Exam-
ination of the vector diagram shown in the upper right-hand part of the
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figure shows that, in the time taken for an individual plane wave to travel
the distance EF, the field pattern of Figure 8-4 travels in the z direction a
distance EG. Thus the phase velocity of the field pattern in Figure 8-4 is
given by v, = ¢/sind. On the other hand, the electromagnetic energy
associated with the individual plane waves propagates in the direction of
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Fia. 8-4 A superposition of the two plane waves shown in Figure 8-3. With increas-
ing time the whole pattern moves in the z direction with phase velocity v, = ¢/sind.
The wavelength in the z direction is given by A, = A,/sin. The energy associ-
ated with the two separate waves propagates in the direction of travel of the wave
fronts of the separate waves. This direction makes an angle of 90° — 6 with the 2
direction. Hence, the energy associated with the above pattern propagates in the z
direction with a group velocity given by v, = ¢ cos (90° — 6 = csind.
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travel of the wave fronts and hence at an angle of 90 — 9 degrees with re-
spect to the z direction. Since one wave transports electromagnetic energy
to the right and upwards, and the other wave transports electromagnetic
energy to the left and upwards, the net transport of energy is in the 2
direction only. The velocity with which the energy is transported in the 2
direction is given by the group velocity v, = ¢ cos (90° — 8) = c siné.

The wavelength A, of the field pattern in Figure 8-4 is easily seen to be
related to the free-space wavelength A, by A, = A\,/sinf.

From Figure 8-4 it is evident that the electric field intensity is zero along
the planes AB and CD at all times, and the magnetic field lines never
cross the planes. Hence, if thin conducting sheets were inserted along these
planes, the field pattern would not be disturbed. In this case the two plane
waves between the conducting sheets reflect from one side to another, at
the same time progressing in the z direction. The plane waves outside the
conducting sheets are likewise reflected from the conducting sheets, and the
net result is that the field pattern of Figure 8-4 is undisturbed.

Next, let us remove the field pattern for a moment and suppose we have
two conducting plates of very large area and spaced by the distance from
plane AB to plane CD in Figure 8-4. Suppose that two plane waves are
launched between the plates with the E field parallel to the plates and with
the wave fronts making an angle 6 with the surface of the plates. The angle
between the two wave fronts is then 26, as in Figure 8-3. The two waves are
reflected from plate to plate, and the resulting field pattern is identical to
that shown between the planes AB and CD in Figure 8-4.

Finally, suppose that the two “side plates” of the previous paragraph
are joined by ‘“top” and “bottom” plates to form a rectangular wave-
guide, as shown in Figure 8-5. The electric field lines now terminate on
surface charges on the top and bottom plates, but the shape of the field
pattern is otherwise unchanged. The waves propagate along the wave-
guide with phase velocity v, = ¢/sinf, and the electromagnetic energy
propagates with the group velocity given by v, = ¢ sinf. The axial wave-
length of the field pattern in the waveguide is given by A. = \,/siné.

What we have done here is to find a field pattern that satisfies the bound-
ary conditions imposed by the rectangular waveguide. These boundary
conditions require that the tangential component of electric field intensity
at the surface of the conducting walls be zero, and the normal component
of magnetic field intensity at the surface of the waveguide be zero. From
Figure 8-4 it is evident that the distance between planes AB and CD is
determined by the angle § and the wavelength A\, of the plane waves.
Conversely, if we have a waveguide of a given width a and a given wave-
length \,, the angle ¢ is determined. If we set the width a of the waveguide
equal to A\./2, it is evident from Figure 8-4 that cos § = \./\., and hence
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F1c. 8-5 Field patterns in a rectangular waveguide. The broken lines indicate the
shapes of the magnetic field lines, and the solid lines indicate the shapes of the
electric field lines.

sing = 1 — cos?8 = \1 — A2/A 2. Thus we have the relations

vy = (8-5)
VI = A2/

v, = c\1 — A2/A2 (8-6)

and

WP, (8-7)

TN A2

So far we have described only the most frequently used dominant mode
of propagation of waves in a rectangular waveguide. From Figure 8-4 it is
evident that waves in this mode can propagate only if A, is less than ..
We also note that Equations (8-5) and (8-6) indicate that v, and v, become
imaginary quantities when A, > A.. The wavelength A, is called the cutoff
wavelength and is a characteristic of the waveguide and the mode of prop-
agation. Signals of wavelength shorter than A\, can propagate, but signals
of longer wavelength cannot propagate. (We assume here that the di-
mension b of the waveguide is smaller than a.)

Finally, let us return once more to Figure 8-4. Suppose the plane CD
were translated to the right a distance A./2. The field pattern between the
planes would then consist of two side-by-side patterns similar to the one
described above for the dominant mode of the rectangular waveguide.
Clearly this field pattern also satisfies the boundary conditions of an
enlarged waveguide, that is, one twice as wide as we have previously con-
sidered. Or, conversely, for a given waveguide width, such a field pattern
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can be established in the waveguide provided the free space wavelength
of the signal is sufficiently short. In g similar way, we see that an infinite
number of field patterns or modes of propagation can be established in a
rectangular waveguide. As the field pattern becomes more complex, the
cutoff wavelength becomes shorter, and the signal frequency must be
higher. Furthermore, since waves can be reflected from the top and bottom
of the rectangular waveguide, there is a second infinite set of modes of prop-
agation in which the electric field lines are parallel to the a dimension of
the waveguide. Also, for a given signal frequency, a mode with the E field
parallel to the a dimension can be superimposed on a mode with the E
field parallel to the b dimension. The resulting field patterns, therefore,
can be very complex. Later in the chapter we shall find that there are still
other modes of propagation in which the E field has a z component and the
H field is entirely transverse to the z direction.

The final section of the chapter considers the propagation of electro-
magnetic waves along transmission lines which are characterized by phase
velocities that are less than the velocity of light. Such transmission lines
form integral parts of a number of microwave tubes, such as traveling-wave
tubes, backward-wave oscillators, and magnetrons.

8.1 Maxwell’s Equations and the Wave Equation

Some of the laws governing the behavior of static electric and magnetic
fields were discussed in Chapter 1. The equations from that chapter which
are pertinent to our present discussion are listed below.

Equation (1.1-4): 74 Edl=0 (8.1-1)
closed path

Equation (1.4-3): VD =p (8.1-2)

Equation (1.5-2): V-B=0 (8.1-3)

Equation (1.5-5): VXH=] (8.1-4)

We shall consider these equations one by one to see what form they take
when time-varying fields are present.

First, it may be stated that Equations (8.1-2) and (8.1-3) are true as they
stand for time-varying fields and charges as well as for static fields and
charges.

Let us next consider Equation (8.1-1) as it applies to a closed loop of
resistance wire. The experiments of Faraday have shown that, if the loop
is linked by changing magnetic fields, there will be current flow around the
loop and hence a voltage drop around the loop. That is to say, the right-



242 PRINCIPLES OF ELECTRON TUBES

hand side of Equation (8.1-1) is not equal to zero in such a time-varying
field. Faraday’s law may be stated mathematically as

&dl = —— / ®-ndS (8.1-5)

closed path surface

where the surface of integration is taken as any surface bounded by the
closed path. Secript letters are used for the time-varying field vectors to
distinguish them from the de vectors used previously. Physically the law
states that the total voltage induced in a closed loop is given by the time
rate of change of magnetic flux linking the loop. We can convert this equa-
tion to a more useful form by applying it to a small loop of area AA, the
loop being small enough that ® can be taken as uniform in magnitude and
direction. Let the component of & normal to the plane of the loop be denoted
by ®.. Dividing both sides of the equation by A4 and taking the limit as
AA — 0, we have

lim f gdl = — (8.1-6)

closed path
But the left-hand side is equal to the component of V X & normal to the

plane of the loop, so that

®
VX &= -  (8.1-7)
Expressions for the curl in rectangular and eylindrical coordinate systems
are given in Appendix XII.

Maxwell’s great contribution to these fundamental laws was a recognition
of the fact that ac magnetic fields are set up not only by real currents con-
sisting of charges in motion, but also by so-called displacement currents.
The displacement current density is given by the time rate of change of the
electric flux density vector (3/9f) D, so that Equation (8.1-4) becomes

vxm=3+% (8.1-8)
If we take the divergence of both sides of Equation (8.1-8), we obtain
0D
w(s+2) -0

since the divergence of a curl is identically zero. Using Gauss’s Law,
Equation (8.1-2), this may be written as

d
Vig+g =
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the equation of continuity, Equation (1.3-2). Thus, the introduction of
the displacement current density in Equation (8.1-8) is necessary to
satisfy the equation of continuity.

We may thus summarize our results for ac and de fields in the four
equations known as Maxwell’s equations:

B

VXE=—" (8.1-9)
VX =49+ %? (8.1-10)
VD =p (8.1-11)
V® =0 (8.1-12)

Equations (8.1-9) and (8.1-10) when taken together, with conduction
current density g set to zero, form a very interesting pair. Equation (8.1-9)
states that a changing magnetic field gives rise to an electric field, and
Equation (8.1-10) in turn states that a changing electric field gives rise to
a magnetic field. Thus it is clear how wave propagation and standing-
wave phenomena are obtained: each type of electromagnetic field vector
acts as a source for the other. A change in one produces the other, and
vice versa. Thus, energy oscillates continuously from the electric fields to
the magnetic fields and back.

In all our discussions of microwave tubes we shall describe physical be-
havior for a simple sinusoidal variation at a fixed frequency. In all cases
we shall be dealing with linear phenomena, and hence we can represent
any arbitrary input or response by a superposition of sinusoidal inputs and
responses. We can therefore use the phasor notation to describe the
currents and field vectors:

& = Re Ee®, g = Re Je, ete.
Then

%fi — Re juEe®!, ete. (8.1-13)
Thus, if all quantities vary sinusoidally at a single frequency, we have the
following form of Maxwell’s Equations:

VXE = —juB (8.1-14)
VXH=J+ juD (8.1-15)
VD=5 (8.1-16)

vV-B=20 (8.1-17)
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In rectangular coordinates Equations (8.1-14) and (8.1-15) can be written as
3E, OE,

W = —joup.H .
86121 _ ‘Z_i’z = —jopu.H,
«% _ % = —jounH, (8.1-18)
and
85: _ agu = J, + jwee E,
63_1? _ a;iz =J, + juwee E,
a;i" ~ a;;, = J. + juse s (8.1-19)

where we have substituted B = uu H in Equation (8.1-14) and D = ¢, Ein
Equation (8.1-15).

In addition to Equations (8.1-14) through (8.1-17), it should be noted
that two other equations from Chapter 1 are valid for time-varying fields
as well as for dc fields. These are the equations for the force on an electron,
Section 1.2, and the equation of continuity, Equation (1.3-2), which in
phasor notation becomes

V-J = —jup (8.1-20)

Let us now use Equations (8.1-14) and (8.1-15) to derive the wave equa-
tion for an electromagnetic wave in a region in which there are no free
charges and no conduction currents. In this case the equations reduce to

VXE = —jopuH (8.1-21)
V X H = joee.E (8.1-22)

Taking the curl of both sides of the first equation and combining the result
with the second equation, we obtain

VX (VXE) = —jouu,V X H = wpuseE (8.1-23)
Now from Equation 13 of Appendix XIT,
VX (VXE)=VV-E)— VE (8.1-24)

The first term on the right here is zero since, from Equation (8.1-16),

E =2 (8.1-
V-E poy (8.1-25)



MICROWAVE COMPONENTS AND CIRCUITS 245

and we have assumed p = 0 in the region of space under consideration,
Equation (8.1-23) then can be written as

VE 4+ KE =0 (8.1-26)

where k* = w’upsee,. This equation is known as the wave equation for an
electric field. Equations (8.1-21) and (8.1-22) also can be used in a similar
manner to derive the wave equation for a magnetic field, namely

VH+FPH =0 (8.1-27)

Equations (8.1-26) and (8.1-27) describe the propagation of an electro-
magnetic wave in a region of free space in which there are no free charges or
conduction currents.

Perhaps the simplest application of Equations (8.1-26) and (8.1-27)
is in the deseription of a plane electromagnetic wave, such as one might
obtain at a very large distance from a radiating antenna. Let us assume
that the electric field intensity of the wave is directed only in the z direction
and is given by E,. For a wave propagating in the z direction, Equation
(8.1-26) then reduces to

dzE" 2 —_
97 +KkE,=0 (8.1-28)
This has the solution
E, = E % (8.1-29)

Now k? = w?upe,, and in free space u = ¢ = 1. We shall set k¥ = w/cfora
wave in free space, where ¢ = 1/4uss,. If time dependence is included, and
if we assume the propagating medium is free space, the expression for the
electric field intensity becomes

) ) z
&: = Re B, e/@tt*) = Re E, ot = F_ cos w(t + Z)

(8.1-30)

Here the plus sign in the term cos w[¢ & (2/c)] applies to a wave propagating
in the negative 2 direction, and the minus sign applies to a wave propagating
in the positive z direction. We see that the quantity ¢ = 1/4/us, is the
velocity of propagation of the plane wave, equal to 3 X 108 meters/sec.

By setting E, = E. = 0 in Equation (8.1-18), we find that H, = H, = 0,
and

, =L %_ Lp ;_E (8.1-31)

where we have assumed & wave propagating in the positive z direction and
have used a minus sign in the exponent on the right-hand side of Equation
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(8.1-29). We have also assumed that » = ¢ = 1. Equation (8.1-31) indicates
that for a plane wave propagating in free space, the ratio of the electric field
intensity to the magnetic field intensity is given by Vuo/e,. This ratio has the
dimensions of an impedance and is numerically equal to 377 ohms.

8.2 Energy Stored in Electric and Magnetic Fields; Power Flow in an
Electromagnetic Wave

Here we shall first derive expressions for the energy stored per unit
volume in electric and magnetic fields. The expressions apply to both static
and time-varying fields.?

(@) Electric Fields

Consider a capacitor that is charged to a voltage of v volts. If an incre-
mental amount of charge dg is added to the charge already on the capacitor,
the work done in adding the incremental charge is vdg. This work is con-
verted to energy stored in the electric field of the capacitor. Now from
Equation (1.4-7) we have ¢ = Cv, and hence dg = Cdv. Thus the work
done in adding the charge dg to the capacitor is Cvdy. If the capacitor is
charged from zero volts to v volts, the energy stored in the electric field of
the capacitor is given by

energy stored = / Cvdy = 3Cv? ) (8.2-1)

If the capacitor is a parallel-plate device in which the plates are of area 4
and spacing d, and if edge effects are neglected, C = e,4 /d, and the energy
stored per unit volume between the plates is 3Cv?/Ad = 3es,(v/d)%. Setting
v/d = &, where & is the electric field intensity between the plates, we obtain

energy stored per unit volume = Jes,&? (8.2-2)

We see that the expression for the energy stored per unit volume depends
only on the magnitude of the electric field intensity and is independent of
the geometry of the electrodes that generate the field.

(b) Magnetic Fields

Equation (8.1-5) indicates that the voltage induced in a loop of resistance
wire by a changing magnetic field is equal to the time rate of change of the
magnetic flux linking the loop. Consider a toroidal coil, such as that shown
in Figure 1.5-3. If the coil has N turns and all are linked by the flux ¢, the

*References 8a, 8¢, 8d.
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voltage induced in the coil by a changing ¢ is given by
d¢
dt

Now the inductance L of the coil is equal to the number of flux linkages per
ampere of current passing through the coil. Hence N¢ = Lz, and

v =

(8.2-3)

Nd¢ = Ldi (8.2-4)
Equation (8.2-3) then can be written as
di
v=Ig (8.2-5)

This equation states that when the current through the coil is changing,
there is a voltage v developed across the coil proportional to the rate of
change of the current. (The resistive losses in the coil are neglected here.)

The rate at which work is being done to change the current in the coil is
vi. Thus the work done in an inerement of time d¢ during which the current
changes by di is vidt = Lidi. This work is converted to energy stored in the
magnetic field of the coil. The total energy stored in the magnetic field
when the current in the coil is increased from zero to ¢ is then

energy stored = / Lidi = 1Ls? (8.2-6)
0

In the case of the toroidal coil shown in Figure 1.5-3, L = mrupnN,
where 7 is the radius of the individual turns of wire, u is the relative permea-
bility of the medium filling the eoil,  is the number of turns per unit length
around the coil, and N is the total number of turns in the coil. If R'is the
mean radius of the toroid, n = N/2«xR. The volume within which the
magnetic energy is stored is approximately given by (nr?)(27R). Hence the
energy stored per unit volume within the coil is given by $L:?/(7r?) (27R),
which reduces to

energy stored per unit volume = %uu,(nt)? = Suu,3C2 (8.2-7)

where we have substituted 3¢ = ni from Equation (1.5-11). Again we see
that the energy stored per unit volume depends only on the magnitude of
the magnetic field intensity and is independent of the field configuration.

(¢) Power Flow in an Electromagnetic Wave

Here we shall examine the power flow associated with a plane wave propa-
gating in free space. We shall assume that the wave propagation is in the 2
direction and consists of an electric field component &, and a magnetic field
component 3¢,. Consider a pillbox element of volume with faces of area A
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lying parallel to the z-y plane and having thickness dz in the z direction.
The energy stored in this volume will vary with time as the wave propagates
past the volume element. From Equations (8.2-2) and (8.2-7), the in-
stantaneous stored energy in the volume element is given by

W = 3(ebs? + poIC,HAdz (8.2-8)
The rate of change of energy stored in the volume element is
%‘%&7 = Adz(eo 288, + po yag(t:”
- —Adz(s,a%:f + scu%%)
= —Ade- (650, (8.2-9)

where we have substituted e.(68./8t) = —a3¢,/dz from Equation (8.1-10)
and p.(d3C,/8t) = —d8./0z from Equation (8.1-9).

Thus the time rate of change of the energy stored in the volume element is
equal to the change in the quantity A8,3¢, in the distance dz. Since energy
flows only in the z direction, we see that &3¢, is of the nature of a power
density, or rate of flow of energy per unit area. It is customary to represent
the power density by a vector S, which is directed in the direction of
propagation. In the present case,

|S| =8, =83, (8.2-10)

More generally, whenever there is propagation of electromagnetic energy,
the power density can be represented by a vector S such that

S=8X1 (8.2-11)

The vector S is called the Poynting vector after the man who discovered it.

The power density is measured in watts per square meter.
Equation (8.2-10) can be written in another useful form as follows:

S = (szgcy + Szgcy) = —['\/_812 + '\/"‘—ascy ] [ 5081 + 2#03(314 ]
(8.2-12)

where we have substituted & = uo/e, 3¢, from Equation (8.1-31) and
¢ = 1/\us.. Thisstates that the energy stored in the electric and magnetic
fields of the plane wave propagates in the z direction with velocity ¢, as we
might expect.

8.3 Boundary Conditions

Maxwell’s Equations constitute a set of differential equations which can
be solved in a given region subject to imposed boundary conditions. In
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many cases, the region over which a solution is sought can be divided up
into several subregions, and appropriate matching of fields is made at the
boundaries between these regions. Let us therefore consider the relation-
ships between the fields adjacent to a boundary but on either side of it.

(a) Electric Fields

Figure 8.3-1(a) shows the boundary between two regions of different
relative dielectric constants e4 and ez. A single electric field line passing
through the boundary between the two regions is shown. In region A the
electric field has magnitude E,4, and in region B it has magnitude Ez. A
small rectangle is drawn about the point where the field line crosses the
boundary. The rectangle is Az units long in the direction parallel to the
boundary and Az units wide in the direction normal to the boundary. Half
of the rectangle is in each region. We shall assume that E4 can be resolved
into two components, one parallel to the boundary E) 4, and one normal to
the boundary E,,. Similarly, Ez can be resolved into components E| s
and E 1B.

Da=€,E0Ep

\
REGION A RE
REGION A AREA AA

REGION B REGION B De=tstols

(a) (b)

Fie. 8.3-1 Electric field vectors at a point on the boundary between two regions.
Region A has permittivity es&, and region B has permittivity eze,.

Let us evaluate Equation (8.1-5) for the region defined by the rectangle
AzAz in Figure 8.3-1(a). Substituting & = Re E ¢** and @ = Re B ¢**in
the equation, we obtain

E-dl = —jw / B-ndS (8.3-1)
closed loop surface
If both Az and Az are assumed to be very small, E in region 4 or region B

will be constant in magnitude and direction over the part of the rectangle
included in the region. Let the average value of the component of B
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normal to the plane of the rectangle be B,. Equation (8.3-1) can then be
written

E-dl

A A Ax A
E Az + EJ.B"; + EJ.A'21: — B8z — ELA? - E_LB?:E
rectangle

= —jwBAzxAz (8.3-2)

Next let Az — 0 in such a way that the rectangle is still centered about
the boundary. The right-hand side of Equation (8.3-2) then approaches
zero, and the equation reduces to

E|pAz — Ejj40z = 0 (8.3-3)
from which
Ens=Eys (8.3-4)

Thus the components of E parallel to the boundary are equal on both
sides of the boundary, despite the fact that the two regions have different
dielectric constants.

Next let us consider the field perpendicular to the boundary. We shall
work with the D vector in this case and show that the normal component of
D is continuous at the boundary. Figure 8.3-1(b) shows an electric field
line which passes through the boundary between regions 4 and B. In
region A, D4 = e4e,E4, and in region B, Dp = eps,Ep. A small pillbox-
shaped volume surrounds the point where the field line passes through the
boundary. The pillbox has area AA on the faces paraliel to the boundary
and thickness Az. We assume that D, can be resolved into a component
Dy 4 perpendicular to the boundary and D4 parallel to the boundary.
Similarly, Dp can be resolved into D) and D s.

Equation (8.1-16) can be written in the form

/ V-Ddv = f odv (8.3-5)

volume volume

Using Gauss’s theorem (Appendix XII) this may be written as

D-ndS = f pdy (8.3-6)

closed surface volume
This is the same as Equation (1.4-2). Let us now apply this equation to the
pillbox-shaped volume in Figure 8.3-1(b). If we let the thickness Az of the

box become vanishingly small, and if we assume there is no surface charge
at the boundary,

D-ndS = DJ_AAA - D‘_LBAA = / de =0 (8.3-7)

closed surface volume
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Then
Dyy=Dip (8.3-8)

Thus the perpendicular component of electric flux density is continuous at a
boundary.

(b) Magnetic Fields

Next, consider the boundary between regions of relative permeability
w4 and up, as shown in Figure 8.3-2(a). The figure shows a single magnetic
field line which passes through the boundary. A rectangle of dimensions Az

Ba=upuoHa

REGION A REGION A

Ay
AREA AA

REGION B REGION B Bp= ugioHp

(a) (b)

Fia. 8.3-2 Magnetic field vectors at a point on the boundary between two regions.
Region A has permeability pap, and region B has permeability uasy..

by Az surrounds the point where the field line crosses the boundary and is
centered about the boundary so that the rectangle lies in each region. We
assume that H, can be resolved into components H, 4 and H)., per-
pendicular and parallel to the boundary. Similarly, Hz ean be resolved into
components H 5 and H|p.

Let us evaluate Equation (8.1 -15) for the region defined by the rectangle
AzAz in Figure 8.3-2(a). The equation can be written in the integral form

/ (Vv X H)-ndS = / (J + jwD)-ndS (8.3-9)

surface surface

Applying Stoke’s theorem (see Appendix XIT), we obtain

H-dl = /(J'+ij)~ndS (8.3-10)

closed loop surface

If both Az and Az are very small, H in region A or B will be constant in
magnitude and direction over the part of the rectangle included in the
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region, and J and D will be uniform over the area of the rectangle. Let the
average values of the components of J and D normal to the plane of the’
rectangle be J, and D,. Equation (8.3-10) can then be written as

A A
Hdl = H”BAZ + HJ_B’2—1; + H_LA—;-: -_— H“AAZ

closed loop

—H“ézf _ HLB% — (. + juD))AvAz (8.3-11)

If we now let Az approach zero, th: right-hand side of the equation ap-
proaches zero, and the equation reduces to

H“BAZ s H||AAZ =0 (8.3-12)
or
Hya = Hyz (8.3-13)

Hence the tangential component of the magnetic field intensity vector is
continuous at a boundary.

Finally, let us consider the normal components of magnetic field at the
boundary. We shall start with Equation (8.1-17) in the integral form:

/ V-Bdv =0 (8.3-14)

volume

Using Gauss’s theorem (Appendix XIT) gives us

B-ndS =0 (8.3-15)

closed surface

If this equation is applied to the pillbox-shaped volume shown in Figure
8.3-2(b) and if we let the thickness Az of the volume become vanishingly
small, we obtain

B-ndS = Bi14sAA — BipAAd =0 (8.3-186)
closed surface

Hence
Bis = Bis (8.3-17)

Thus the perpendicular component of magnetic flux density is continuous
at a boundary.

In summary, at an infinitesimally thin boundary between two regions
which have different permeability and permittivity, the tangential com-
ponents of E and H are continuous, and the perpendicular components of D
and B are continuous.
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8.4 Ohm’s Law and Skin Effect
(a) Ohm’s Law

Ohm’s Law is perhaps the first learned and most basic of the experi-
mental laws of electricity. At low frequencies this law states that the
ratio of voltage drop to current in a resistor is a constant. At microwave
frequencies, the current density throughout a resistor or a conductor is
usually not constant, and Ohm’s Law is best stated in the form

J=oE (8.4-1)

where J is the current density, E is the electric field intensity, and o is the
conductivity of the medium.

This equation can be related to
the more familiar form of Ohm’s
Law in the following way. Consider
a conductor of length ! and cross-
sectional area A, as shown in Figure
8.4-1. A voltage V is applied over
the length !, and a current density
J flows parallel to the length .. We
assume the current density is uni- Fig, 8.4-1 A uniform cylindrical con-
form over the cross section of the ductor of conductivity .
conductor. The electric field in-
tensity within the conductor is of magnitude E. ThenJ = ¢F, and the
total current flowing in the conductor is given by

I =JA =0EA = all]A = % (8.4-2)

or
V=1IR (8.4-3)

where B = [/cA is the resistance of the conductor over the length I.
Equation (8.4-3) expresses the more familiar form of Ohm’s Law.

(b) Skin Effect

Here we shall derive the distribution of current density in a semi-infinite
conductor when an rf electric field is applied parallel to the surface of the
conductor.t Figure 8.4-2 shows a portion of the conductor. We shall as-
sume that the electric field is applied in the 2z direction only and that it
does not vary in magnitude in the y and z directions. Let the electric field

‘Reference 8a.
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just outside the conductor be E.,. From the discussion in Section 8.3, we
know that this field will be continuous across the boundary between the
conductor and free space, and hence that E,, also will be the electric field
intensity just inside the surface of the conductor. We shall first determine

z

FREE
SPACE

Y AXIS DIRECTED INTO PAGE

Fig. 8.4-2 Current flow near the surface of a conductor at microwave frequencies.

the variation of E, with distance z into the conductor, and since J, = ¢E.,
we shall note that J, varies in a similar manner with distance into the
conductor.

Let us use Equations (8.1-18) and (8.1-19) to derive an equation for E,
within the conductor. Since E, = E, = 0E./dy = 0, Equations (8.1-18)
reduce to

H,=H,=0 (8.4-4)
and

. JE,

Joppoy = 2= (8.4-5)

We shall setJ, = ¢E, and J, = J, = 0 in Equations (8.1-19). Then

aH,
o (8.4-6)
and
Oy _ (5 4 juse,)E. (8.47)

ox
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Substituting for H, in Equation (8.4-7) from Equation (8.4-5), we obtain

*E, . .

i Joupolo + jwee,)E, (8.4-8)
Consideration of the actual values of o, w, and ee, for conductors at micro-
wave frequencies shows that

o> wee, (8.4-9)
Hence to a good approximation
aE, .
o Jopp.ol, (8.4-10)

This is the wave equation for an electric field in a conducting medium. The
equation is analogous to Equation (8.1-26), which applies to electro-
magnetic waves in free space or in a dielectric medium. Equation (8.4-10)
has the solution

E, = E, e Wtdussgi2 z (8.4-11)
Finally, substituting J. = oE, and J,, = ¢E.,, we obtain
J. = J o6 W Dorsgi2 (8.4-12)

This equation shows that not only does the current density decay in magni-
tude away from the surface, but it also experiences a progressive phase
shift. Although this relationship has been derived for a plane surface of
infinite depth, it may be applied to curved surfaces of finite depth as long as
the current decays in a distance small compared with the thickness and
radius of curvature of the conductor.

It is convenient to write Equation (8.4-12) in the form

Jo = J, e UFdalt (8.4-13)
where

1
0= 8.4-14
Vrfupoo ( )

The length 8 is known as the skin depth. The skin depth & is a measure of
the rate at which the current density decays into the metal. In a distance &
from the surface, the current density has dropped to 1/¢ of its value at the
surface. This is a very rapid decay at microwave frequencies for most
metals. Table 8.4-1 gives the number of skin depths in a 1.59 mm (1/16
inch) thick wall of several metals commonly used in microwave transmission
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TasLE 8.4-1. NuMBER oF SKIN DeprHs IN 1.59 MM THICKNESS
WarLs oF VARIOUS MATERIALS

Number at Number at

Metal 3 Ge 9Gc
Silver. . ..o 1352 2340
(970)¢) 4= P 1318 2280
Gold. ... 1106 1913
Molybdenum. . ................... 726 1258
Nickel........ccvv i 583 1010
Stainless steel (nonmagnetic). .. ... .. 181 314

lines and electron tubes. This thickness is used for the wall of several stand-
ard size waveguides at microwave frequencies. Because the skin depth is so
small at microwave frequencies, one normally assumes negligible currents
exist on the outer surface of a waveguide or cavity. For example, at 3 Ge
a copper waveguide of 1.59-mm wall thickness has current densities on the
outer surface which are only 10~ times thé current density on the inner
surface. Thus, in effect, perfect shielding is accomplished. Since the
current density decays so rapidly with distance, the bulk of the metal in
microwave conducting structures is not used to provide a path for current
flow but rather is used for structural rigidity. It is an excellent approxima-
tion to visualize the wall currents in microwave structures as consisting
solely of surface currents.

The imaginary part of the exponent in the right-hand side of Equation
(8.4-11) gives the phase change of the electric field intensity as it propagates
into the conductor. We see that the skin depth & corresponds to 1/2x
wavelengths of the type of wave propagation that takes place in the
conductor.

Orie can use Equation (8.4-13) to determine the total ohmic power loss
per unit surface area of the conductor for a given tangential component of
magnetic field in free space just outside the conductor. The ohmic power
loss in an element of volume having unit length parallel to the surface, unit
width parallel to the surface, and thickness dz in the direction normal to the
surface is (1/20) |J . |? dz. The total power loss per unit area of the surface
is then

1 [* 8
P[] = %-/0 IJ,de = Z;lJzolz (84.-15)

where we have substituted for J. from Equation (8.4-13).
Often it is more convenient in using this equation to express J., in terms
of the magnetic field in free space just outside the conductor. Within the
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conductor we can rewrite Equation (8.3-10) in the form

H-dl = / (¢ + juee,)E-ndS = / E-ndS

closed loop surface surface

= / J ndS (8.4-16)
surface

where we have again made the approximation that ¢ 3> wes, within the con-
ductor. Figure 8.4-3 shows a cross-sectional view of the conductor near the

e 2conolu/cma%//\

PATH OF INTEGRATION

y
b
X

Fic. 8.4-3 Current flow in a conductor at microwave frequencies. The length L is
much greater than 8. The component of magnetic field parallel to the path of inte-
gration is therefore zero along the right-hand side of the path of integration.

surface. The current flow J, is assumed to be normal to the page and
directed out of the page. Let us evaluate the left-hand side of Equation
(8.4-16) for the path of integration shown in the figure. We assume that the
length L is very large so that J, is essentially zero at the right-hand side of
the path. For symmetry reasons there is no net contribution to the line
integral for a component of H parallel to the top and bottom sides of the
path of integration (assuming h is infinitesimally short). Then

H-dl = Hyh = / J-ndS =J,,,h/ Dl gy
closed loop surface ¢
J2ohé
1+

(8.4-17)
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where H| is the magnetic field parallel to the surface just outside the con-
ductor. Then

J b
H, =-—2— 4-
=T (8.4-18)
Substituting into Equation (8.4-15), we obtain
_lH e
Pp = 553 (8.4-19)

This equation is most useful in the sense that ohmic losses in cavity or wave-
guide walls can be computed directly from the magnetic fields in the free
space adjacent to the metal without resorting to calculations of the currents
within the metal conductors themselves.

Equation (8.4-14) shows that § is inversely proportional to the square root
of the frequency. Hence, by Equation (8.4-19), the ohmic loss is propor-
tional to the square root of the frequency, for a constant conductivity and
for a given magnetic field at the surface.

() The Perfect Conductor

The concept of a perfect conduetor is often used in the study of micro-
wave components. In essence, this concept assumes, for purposes of solving
for the fields in regions not containing metal, that the conductivity of the
metal is infinite. Now, infinite conductivity implies that charges could
travel instantaneously to neutralize any electric field which would tend to
be set up within a conductor; thus the electric field within a perfect con-
ductor is zero. Since the tangential component of electric field is continuous
at the surface of the conductor, the tangential component of electric field
outside the conductor must be zero adjacent to the surface. However,
electric field lines can terminate on surface charges on the conductor, the
field lines being perpendicular to the surface at the point of intersection.
On the other hand, magnetic field lines cannot pass through a perfect con-
ductor or terminate on it. Thus, there can only be a tangential component
of magnetic field just outside a perfect conductor.

The errors involved in using the concept of a perfect conductor to find
the external field distribution are of the same order of magnitude as the
ratio of the skin depth to the other cavity or waveguide dimensions, and
generally they may be considered to be negligible. Thus, for most purposes,
the electromagnetic fields within a cavity or waveguide can be found under
the assumption that the metal walls are perfect conductors. The fact that
the conductor is imperfect affects only the power loss or attenuation, and
this may be accounted for by using the concept of skin depth together with
Equation (8.4-19).
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8.5 Waveguides

In this section we shall discuss solutions of the wave equation for the case
of electromagnetic wave propagation in a waveguide. Figure 8.5-1 shows an
end view of a waveguide. We shall assume that the waveguide is of infinite
length in the z direction and its cross-sectional dimensions remain constant
with z. The walls of the waveguide are perfect conductors, so that the
solutions we obtain must satisfy the boundary conditions that the tangen-
tial component of electric field and the normal component of magnetic
field be zero at the conducting surfaces. It turns out that there are an
infinite number of solutions to the wave equation which satisfy these
boundary conditions. These solutions are known as modes of propagation.
This is analogous to the infinite number of possible modes of vibration for a
vibrating string. Which modes are vibrated depend on how the string is
plucked. In the waveguide, the manner and frequency of excitation at the
input determine which modes are excited.

<————o’——-——>1

Fie. 8.5-1 Rectangular waveguide.

The infinite number of waveguide modes of propagation can be divided
into two classes. Modes with E, equal to zero are known as transverse
electric modes or TE modes. Modes with H, equal to zero are known as
transverse magnetic modes or TM modes. As long as the waveguide is
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uniformly filled with dielectric (including air or vacuum) the solutions fall
into one or the other of these two classes.®

(@) TE Modes

The solution for the TE modes can be obtained as follows. The wave
equations, Equations (8.1-26) and (8.1-27), are vector equations and hence
are satisfied by each component of the electric and magnetic fields. Thus
the 2z component of magnetic field satisfies the equation

VeH, + B*H, = 0 (8.5-1)
where k% = w?uuce,. Expanding the Laplacian, we obtain

FH,  °H, | &H, | .0 _
T2 T o + 37 + kH, =0 (8.5-2)
A particular solution to this equation may be obtained by the method of
separation of variables as

H, = A cos Zn_g_y cos %e—iﬁz (8.5-3)

where m and n are arbitrary integers. We shall see later that this solution
meets the boundary conditions imposed by the waveguide walls. Substitut-
ing Equation (8.5-3) into Equation (8.5-2), we find that the following re-
lationship must be satisfied for Equation (8.5-3) to be a solution:
g+ (m)2 + (ﬂ)2 = K = e, = (8.5-4)
a b ct

The presence of the integers m and n in this equation indicates that there
are an infinite number of solutions corresponding to an infinite number of
modes of propagation.

If the variation of the magnetic field with time is included in Equation
(8.5-3), the equation becomes

mwy N

. =Red €08 ——= c08 — /@ =h2)

m nrx
= A cos —aﬂ cos ==

We see that the wave travels in the z direction with a phase velocity
given by

cos (wt — B2) (8.5-5)

(8.5-6)

™I e

Up

SReference 8.3.
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where 8 is determined by Equation (8.5-4) and is a characteristic of the
particular mode of propagation.

The other components of the fields in the waveguide can be obtained from
Equation (8.5-3) by means of Equations (8.1-18) and (8.1-19). Let us first
note that (1) E, is zero, and (2) all field quantities will vary with z as
¢ # g0 that differentiating with respect to z is equivalent to multiplying
by —jB. We shall assume that the waveguide is filled with air, so that to a
good approximation p = ¢ = 1. Equations (8.1-18) then give

JBE, = —jup.H: (8.5-7)
and
JBE, = jop.H, (8.5-8)
From Equations (8.1-19) we obtain
. 0H, .
_]6Hz — .5._ = ]wEoEy (8.5-9)
x
and
%% + jBH, = jwe K, (8.5-10)

Finally, combining Equations (8.5-7) and (8.5-9) as well as Equation (8.5-3)
gives

and
H.= % 274 cos 7L in e (8.5-12)

Combining Equations (8.5-8), (8.5-10), and (8.5-3) gives

E = kf ‘f"ﬁz mTWA sin % cos nTﬂe'fﬂ' (8.5-13)
and
H, = F]—B—ﬁz M7 4 sin ™Y gog "I s (8.5-14)

Examination of Equations (8.5-11) through (8.5-14) shows that H, is
zero whenz = 0 and whenz = b,and H, = O wheny = 0 and wheny = a.
Similarly, E. = 0 when y = 0 and when y = a, and E, = 0 when z = 0
and when 2 = b. Thus the normal component of H and the tangential
component of E are zero at the inside walls of the waveguide. The field
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solutions given by Equations (8.5-3) and (8.5-11) through (8.5-14) therefore
satisfy the wave equation and the boundary conditions imposed by the
waveguide.

From Equations (8.5-7) and (8.5-8) we note that

B, _ _Ey _ wpo (8.5-15)

showing that the perpendicular components of E and H are constant
through the cross section of the waveguide.

In the introductory part of this chapter, we described the dominant TE
mode, that is the TE mode with the lowest cutoff frequency. This is the
TEp mode (m =1, n = 0). The field components for this mode are

g, = Jontd o Y e (8.5-16)
T a .
g, = 1804 G s (8.5-17)
T a
H, = A cos %ye-fﬂt (8.5-18)
and
B,=E. =H, =0 (8.5-19)

The field configuration for this mode is shown in Figure 8-5.
Setting m = 1, n = 0 in Equation (8.5-4) gives

ot (5)2 ko ‘ci: _ (2{_'>2 (8.5-20)

g = (?\—7)2(1 - ;—:) 8.521)

where we have set A\, = 2mc/w, the free-space wavelength of a wave of
radian frequency w, and N, = 2q, as in the introductory part of this chapter.
The phase velocity for the TE; mode then becomes

or

® WA, c

Up == = = 8.5-22
? ﬁ 27!'V1 - )\02/>\02 '\/1 - XO2/)\¢:2 ( )

as in Equation (8-5). Similarly
=2 oA (8.5-23)

B NI = a2

Next let us consider the group velocity »,. This is equal to the time
average power flow in the waveguide divided by the energy stored per unit
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length in the z direction. From Equation (8.2-11), the time average power
flow for the TEy mode is given by

time average power flow = / (time average of | S |)dzdy
wavarade
_ Bupa®bA?
=z (8.5-24)

where (time average of | S|) = (time average of | & X 8¢ |) = } | E.H, |,
and we have substituted for E, and H, from Equations (8.5-16) and (8.5-17)
From Equations (8.2-2), (8.2-7), and Equation (6) of Appendix XIV, the
average energy stored per unit length in the z direction is given by

energy stored per unit length

1 bofe Mg . 9 . _ o?ua’hA®
—;///Zum o Hy [+ o | H. [y = o0
(8.5-25)

Then

_ _ time average power flow _ g ———
~ energy stored per unit length  « NI = AZ/A? (8.5-26)

Uy

as in Equation 8-6. Some further discussion of the group velocity is given
in Appendix XTITI where it is shown that

a
v, = 5% (8.5-27)
From Equation (8.5-4) it is evident that 898 = wdw/c?, and hence
O (8.5-28)

Substituting for v, from Equation (8.5-22) in this expression, we obtain

v = ¢yl — A2/A3 as in Equation (8.5-26).
The characteristic impedance® of the waveguide is defined in terms of the
time average power flow and a “voltage” at the center of the waveguide
b

given by the integral / E.dz, where E, is evaluated at y = a/2. From
[}

Equation (8.5-16), the mean-square value of this voltage is

mean-square “voltage” _ u/a’A%’ (8.5-29)
at center of waveguide 27? ’

%This definition is not unique. Two other definitions for waveguide impedance are
also used. See Reference 8b, pp. 36, 37.
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The characteristic impedance for the TE;, mode is then given by

7 _ _Wean-square voltage _ 2b Vio/%o _ 754b ohms
°" time average power flow o T — XZ/A2  ayl — AZ/A2
(8.5-30)

where we have substituted from Equation (8.5-24) for the time average
power flow.

Let us plot Equation (8.5-4) as » vs. 8. We obtain the family of hyper-
bolas shown in Figure 8.5-2. Note that each mode has a cutoff frequency
given by 8 = 0 in Equation (8.5-4):

Woutoft = C ('m_w)2 + (7%)2 (8.5-31)

a

Furthermore, each curve is asymptotic to the straight line

w = fc (8.5-32)
This straight line has a slope equal to ¢, the velocity of light. A simple
geometric construction enables us to obtain the phase velocity correspond-
ing to any frequency for any mode. Suppose we want to know the phase
velocity corresponding to propagation in the TEy mode at a radian fre-
quency wi. The slope of a line drawn from the origin to a point on the w-8

7/
;/

o £y P —>

Fic. 8.5-2 w8 diagram for the TE modes in a rectangular waveguide. All the
curves are asymptotic to lines through the origin with slopes equal in magnitude to
the velocity of light. a/b = 2.3.
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curve for the correct mode and frequency (line 4 in Figure 8.5-2) gives the
phase velocity, according to Equation (8.5-22). Note that the phase veloc-
ity for all propagating frequencies and all modes is greater than the velocity
of light. If the waveguide were filled with a dielectric of relative dielectric
constant ¢, the asymptote would correspond to ¢ = 1/+/esou,. The fact that
the phase velocity is greater than the velocity of light is a universal property
of waveguides of this type, having transverse dimensions invariant with
axial position.

The group velocity v, = dw/d8 is equal to the slope of a line tangent to
the w-B curve at the operating frequency (line B in Figure 8.5-2). It is
evident that the group velocity is always less than the velocity of light.

(b) TM Modes

So far we have considered only the transverse electric or TE modes. We
shall now consider the equivalent relationships for the transverse magnetic
or TM modes.

We may begin consideration of the TM modes by considering the z
component of Equation (8.1-26).

V2E, + kE, =0 (8.5-33)
A particular solution to this equation is given by
E, = A sin ™Y sin T2 (8.5-34)
where m and n are integers. When this solution is substituted back into
Equation (8.5-23), we find that

as in the case of TE modes (Equation (8.5-4)).

The other field components may be obtained from Equation (8.5-34) by
application of Equations (8.1-18) and (8.1-19), in whlch case weset H, = 0.
Thus we obtain

]w% mwx 7"?/ _ —'ﬂz -
H,= P—fa A cos —= m b E (8.5-36)
H, = — sz‘f" % %IA sin m;ry cos n;xe"f"’ (8.5-37)
_ Jwﬂ nw MEY o TTE s }
E, = i A sin oG08 = g (8.5-38)
E, = _kTJ—Q_E’ T4 cos _(;r_y sin n—b—e""‘ (8.5-39)

It is easily shown that these field components satisfy the boundary condi-
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tions imposed by the waveguide, and hence these are the field components
associated with transverse magnetic waves. Figure 8.5-3 shows the field
pattern for the TMy mode (m = n = 1).

A
| \dﬂi};/ FEN S PR W N—
R e L ]

]
SECTION A-A :
E LINES — e ﬂ _______________
H LINES ———+» l(- A -)‘

Fiac. 8.5-3 TM;; mode in a rectangular waveguide.

A complete w-8 diagram for both the TE and TM modes is shown in
Figure 8.5-4. All of the TM modes are degenerate; that is, a TE mode has
the same w-8 curve. The two lowest modes are TE modes and have no TM
counterpart. Rectangular waveguide is normally operated in the mode of
lowest cutoff frequency, the TE;, mode.

o p—

Fie. 8.5-4 Complete w-f diagram for a rectangular waveguide. All the curves are
asymptotic to the velocity of light lines. a/b = 2.3.
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The relationships of power flow, group velocity, and phase velocity are
the same for TM as for TE modes. If, for instance, we draw a straight line
from the origin, as shown in Figure 8.5-4, then at the frequencies of inter-
section on each mode branch the phase velocities are all the same; cor-
respondingly, by Equation (8.5-28), the group velocities are also identical
at these points.

We have not considered any losses in the above discussion. Losses may be
taken into account by allowing the propagation constant 8 to be complex,
so that the wave is attenuated in the z direction. In this manner, we can
allow both for resistive losses in the walls and also dielectric losses if the
guide contains dielectric.

Transmission line theory may be applied directly to waveguides. For
instance, a quarter wavelength away from a short circuit one sees an open
circuit. Of course, in the case of a = e
waveguide, a wavelength is no
longer equal to a free space wave-

length ¢/f. Rather it is a guide wave- / =)
length, given by A\, = 2x/8, and 8 is e

obtained from the w-8 curve; A, is
thus a function of frequency and of
the mode of propagation. )
No mention has yet been made of

coupling energy in or out of a wave- []COAXIAL LINE

guide. One common method of e
coupling between a coaxial line and ‘
\

a waveguide is shown in Figure
8.5-5. The center conductor of a
coaxial line is brought down through
the broad wall of the waveguide.
The center conductor acts like an
antenna to radiate energy into the
waveguide. A short is placed in the
waveguide a quarter wavelength to  Fig, 8.5-5 Coaxial line to waveguide
the left of the probe causing the re- transition.

gion to the left of the probe to look

like an open circuit at the probe. Hence, resultant power flow is to the
right. At the receiving end of the waveguide, a similar transition may be
used to couple energy back into a coaxial line.

WAVEGUIDE

8.6 Caﬁty Resonators

In the introductory section of this chapter, we looked at cavity resonators
from the point of view of an evolution from a simple L-C circuit. With the
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discussion of waveguides behind us, we can now look at cavity resonators
from a different point of view.

Let us consider the electric field solutions for the TE; mode in a rec-
tangular waveguide. From Equations (8.5-16) and (8.5-19),

E, = Bsin %ye-fﬂ= (8.6-1)

E,=E, =0 (8.6-2)

Now this solution corresponds to a wave traveling in the positive z direction.
There is an.equally valid solution corresponding to propagation in the nega-
tive z direction:

E, = Csin %yeﬁ,, (8.6-3)
E,=E =0 (8.6-4)

where 8 is taken to be positive in both Equations (8.6-1) and (8.6-3)-
Physically, the wave traveling in the negative z direction could be set up by
an obstacle in a waveguide which reflects part of the outgoing energy back
toward the source. The general solution is thus given by the superposition
of the above two waves, resulting in

E, = (Be#: + Ceti) gin ’%’ (8.6-5)

E,=E, =0 (8.6-6)

Now, we can make a rectangular cavity resonator out of a rectangular
waveguide simply by placing walls perpendicular to the z axis at z = 0 and
z = L. Equation (8.6-5) must then satisfy the additional boundary condi-
tion of being zero at the added walls. Setting E. to zero at z = 0 gives us

0=B4+C (8.6-7)
80 that Equation (8.6-5) may be written

E, = 2{C sin z sin ’%’ (8.6-8)
The additional boundary condition at z = L is satisfied for

=Pr -
8 T (8.6-9)
where p is an integer. Since A, = 2x/B, this states that the cavity must be
an integral number of half guide wavelengths long.
Using Equation (8.4-30) and setting m = 1 and n = 0 for the case of the
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TEw mode, we obtain an expression for the resonant frequencies of the

cavity:
2 2
wp = c\/(%’—') + (:;’), p=123... (8.6-10)

A sketch of the lowest frequeney, or p = 1, mode of oscillation is shown
in Figure 8.6-1 for the case in which L = a. In a cavity at resonance, the
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SECTION A-A
Fic. 8.6-1 Field patterns for the dominant mode of a rectangular cavity resonator.

electric and magnetic lines are 90 degrees out of time phase. The stored
energy oscillates back and forth between the two kinds of fields. Unlike the
waveguide fields, the resonator fields remain fixed in space, varying sinus-
oidally with time uniformly throughout the cavity.

This resonator and its field patterns may be compared w1th the re-
entrant cavity of Figure 8-1. One might have anticipated that the patterns
of Figure 8.6-1 would occur when the heights of the posts in Figure 8-1(d) are
reduced to zero.

A field analysis such as we have just carried out also enables one to obtain
the resonant frequencies of all the higher-order modes. These higher-order
modes are usually of interest not because of their utility but rather because
of the trouble they can cause. For instance, in a magnetron, higher-order
modes may give rise to undesirable output signals.

Resonant cavities of the type considered here are useful as microwave
circuit elements. In essence, they are low-loss resonant circuits, and they may
be coupled together in various ways to achieve filter-type characteristics.
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As an example of a rectangular cavity resonator, let us consider a reso-
nator of the general shape shown in Figure 8.6-1. If we assume the base to
be square, Equation (8.6-10) indicates the cavity will resonate in the TE;n
mode (m = 1,n = 0, p = 1) at a frequency of 3000 Mc fora = L = 7.07
cm. The largest dimension of the re-entrant cavity of Figure 8-2 resonant
at the same frequency was only 1.85 em. Thus the effect of re-entrancy in a
cavity is seen to be a decrease in overall size for the same resonant frequency.
Further analysis reveals that this decrease in size is obtained at the expense
of increased losses for the same stored energy in the two types of cavity.

8.7 Slow-Wave Structures

We have seen in Section 8.5 that wave propagation in ordinary wave-
guides is characterized by a phase velocity which is greater than the velocity
of light. The phase velocity is the velocity with which an observer would
have to move so as to remain always in the same phase of the wave.

In the operation of traveling-wave and magnetron type devices, the
electron beam must keep in step (or nearly in step) with a propagating wave
Sinee electrons can be accelerated only to velocities which are less than the
velocity of light, we must look for microwave circuits or structures capable
of propagating waves with phase velocities less than the velocity of light.

— ——

HLINES

—_—

- >~

F1e. 8.7-1 Transmission line composed of a single wire above a ground plane.
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Fig. 8.7-2 The helix slow-wave structure. (a) Helical coil within a concentric con-

ducting cylinder. This slow-wave circuit is obtained by wrapping the single-wire-

above-ground into a helix, with the ground plane becoming the surrounding cylinder.
(b) Electric field lines for a helix in free space.

For reasons that will become clearer in later chapters, ordinary waveguides
partially or completely filled with dielectric are not satisfactory solutions to
this problem. Instead, the solution will be found in a whole new class of
structures appropriately called slow-wave structures or slow-wave circuits.

A simple, yet highly useful, slow-wave circuit can be demonstrated easily.
Consider first a transmission line consisting of a single wire above a ground
plane as shown in Figure 8.7-1. The propagation characteristics of such a
line are well known.” An oppositely charged image of the round conductor
may be constructed within the ground plane, whereby the behavior of the
single-wire-above-ground line becomes identical with the common two-wire
line. This line propagates a TEM mode in a direction parallel to the axis of

"Reference 8.2.
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the wire at the velocity of light. The TEM designation means that both
the electric and magnetic field lines lie entirely in the transverse plane.

Now it is intuitively obvious that gradual bends or twists of the wire
above the ground plane, keeping the spacing from wire to ground constant,
will have only a minor effect on propagation characteristics of the line. The
field lines will faithfully follow the wire, despite such bends. Thus we can
imagine the line distorted into the helical coil shown in Figure 8.7-2(a).
The requirement that the spacing from wire to ground remain constant is
met by having the ground plane become a cylinder enclosing the coil. If the
spacing from wire to cylinder is much less than the cylinder diameter and
much less than the spacing between turns, the electric field lines from each
wire will terminate almost entirely on the adjacent cylinder surface, and the
field pattern will be similar to that of Figure 8.7-1.

Since the wave follows the wire at very nearly the velocity of light, the
resultant velocity along the axis of the cylinder must be less than the
velocity of light. Consequently, an electron can be shot along the cylinder
axis at a velocity which enables it to keep in step with the wave. The
velocity at which the ‘“in step’’ electron moves is the phase velocity of the
slow-wave circuit. From geometrical considerations, this phase velocity is
eagily shown to be approximately given by

Vp = PR (8.7-1)

Vp? + (wd)?

where d and p are the helix diameter and pitch, respectively.

Helices are commonly used as slow-wave circuits in low and medium
power traveling-wave tubes. However, generally they are employed with-
out the attendant conducting eylinder surrounding the helix. This causes
some quantitative changes in the physical picture presented above, but the
basic nature of the slowing process is unchanged. Figure 8.7-2(b) shows the
approximate shape of the electric field lines when no outer cylinder is
present. For the particular case chosen in the figure, the free-space wave-
length of the signal is approximately equal to the length of wire in twelve
turns of the helix.

For a structure to be a slow-wave circuit, it is necessary that it possess
physical periodicity in the axial direction. That is, there is a finite length,
called the period, by which the infinitely long structure must be translated
in the axial direction so that one obtains the same structure back again,
point for point. In the case of the helical circuit of Figure 8.7-2, for instance,
a translation back or forth through a distance of one pitch length results in
identically the same structure again. Thus, the period of this helical slow-
wave structure is the same as its pitch.
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Only periodic structures can propagate slow waves when filled with air
or vacuum. It can be shown that smooth, air- or vacuum-filled, nonperiodic
structures such as the waveguides of Section 8.4 propagate fast waves only.

(a) Floquet’s Theorem

Since slow-wave structures are necessarily periodic structures? let us
examine some general theorems concerning the solutions of Maxwell’s
Equations and the relations between phase velocity, group velocity, stored
energy, and power flow in periodic structures.

Floquet’s Theorem concerns the nature of the single-frequency solutions
for the electromagnetic fields obtained from Maxwell’s Equations. It may
be stated as follows for a periodic structure consisting of identical cells
of periodic length L placed end to end.

The steady-state solutions for the electromagnetic fields of a single
propagating mode in a periodic structure have the property that fields
in adjacent cells are related by a multiplicative complex constant,
this constant being the same for all pairs of adjacent cells.

Mathematically the theorem niay be stated as
E(x)y;z - L) = I‘E(x,y:z) (8.7-2)

where L is the length of one period of the structure, and T is a complex con-
stant. The direction of propagation is along the z axis, as before. The same
expression can be written with E replaced by H.

The proof of Floquet’s Theorem may be obtained by use of the unique-
ness theorem® of electromagnetic theory which states that the field
solutions in two identical microwave structures, operating at the same fre-
quency, can differ only by a complex multiplicative constant, corresponding
physically to two different levels of excitation. An analogous situation
occurs in ordinary circuit theory where two identical circuits are excited
by two different sources at the same frequency. The corresponding phasor
currents in the two circuits can differ only by a complex constant, equal to
the ratio of the phasors representing the two sources.

Consider the infinitely long periodic structures shown schematically in
Figure 8.7-3(2). Each cell is numbered for identification purposes. Assume
that the solutions for the electromagnetic fields for a wave propagating to
the right have been obtained. Thus, the electric field in cell n may be des-
ignated

Ea n

8Reference 8f.
9Reference 8¢, pp. 486—488.
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where the first subseript indicates that the solution pertains to the circuit
in Figure 8.7-3(a), and the second subsecript identifies the cell number.

Now let us consider a second structure obtained from the first by a
linear translation in the axial direction of one periodic length as shown in

= —— | ————]
n-1 n N+
(a)
n-2 n-4 n

(o) ’

Fic. 8.7-3 Infinitely long periodic structures having identical boundary conditions.
(a) The original structure. (b) Structure obtained from the original structure by a
linear translation of one period in the axial direction.

Figure 8.7-3(b). Because of the translational symmetry, the new structure

will appear identical to the old structure. The uniqueness theorem requires

that the fields of structure b be identical to those of structure a, except for
a constant complex multiplier. That is,
Eb(n—l) = PEan

Eb,, = FEa(n+1), ete. (87-3)

Now we identify structure b by its true nature; it is, after all, merely a
translated version of structure a so that the field pattern in structure b is
the same as in structure a but translated one period to the right.

Eb(n—l) = Ea(n—l)

Es. = Ean, ete. (8.7-4)
Combining Equations (8.7-3) and (8.7-4), we get
Eonyy = TEqp
Eon = IEgenyy, ete. (8.7-5)

This proves the theorem, since = is, of course, arbitrary.

This simple and highly useful theorem is analogous to theorems concerned
with wave propagation in other types of periodic ensembles. For instance,
the currents and voltages in an infinite chain of identical filter sections are
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governed by the same basic rule; that is, the currents and voltages of one
section are equal to the corresponding quantities in the preceding section
multiplied by a complex constant. This analogy is often put to use when a
microwave periodic structure is represented by an equivalent ecircuit con-
sisting of such a chain of filter sections.’

Let us now rewrite the complex constant T in Equation (8.7-2) using the
defining relationship

= el (8.7-6)
so that Equation (8.7-2) becomes
E(@,y,z — L) = PLE(z,y,2) (8.7-7)

Now, B, could in general be complex. If it were a pure real quantity,
it is clear that Equation (8.7-7) implies only a phase shift from one cell to
the next. A negative imaginary part to 8, would imply a decay in the
strength of the fields with distance along the structure, corresponding to
ohmic losses. For simplicity, let us assume a lossless structure, so that
B.isreal. Our results can be generalized later by allowing 8, to be complex,
if we wish to take losses into account.

Now we shall postulate that the solution to Maxwell’s Equations in a
periodic structure can be written in the following form

E(x;y;z) = Ep(x’y’z)e—iﬁoz (8.7-8)

where E,(z,y,2) is a periodic function of z with period L. A similar expres-
sion holds when E is replaced by H. Equation (8.7-8) can be proven to be
the solution if two conditions are fulfilled. First, it must satisfy the wave
equation for the electric field, Equation (8.1-26) and the proper boundary
conditions; and second, it must satisfy Floquet’s Theorem, Equation
(8.7-2). Let us first show that the latter condition is satisfied.

Equation (8.7-8) can be rewritten with z replaced by z — L.

E(z,y,2 — L) = E,(x,y,2 — L)e #o~D) (8.7-9)
Since E, is a periodic function with period L,
E,(x,y,2 — L) = Ep(x,y,2) (8.7-10)
so that Equation (8.7-9) becomes
E(z,y,2 — L) = Ey(x,y,2)e Boretibol (8.7-11)

Equation (8.7-8) may be used in the right-hand side of this equation,
obtaining

E(z,y,2 — L) = E(z,y,2)eoL (8.7-12)

wReference 8h, Chapter 4.
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But this expression is the mathematical statement of Floquet’s Theorem,
Equation (8.7-7). Therefore, Equation (8.7-8) does indeed satisfy Floquet’s
Theorem.

The requirement that the right-hand side of Equation (8.7-8) should
satisfy the wave equation will be applied later after we write Equation
(8.7-8) in a more convenient form. Since E,(z,y,2) is periodic in z with
period L, we can express it by means of a Fourier series:

E,(z,5,2) = 2 Eu(z,y)e itmnils (8.7-13)

This equation is a vector equation, and it is merely a shorthand way
of writing three separate equations, one for each vector component. The
quantities E, in the Fourier sum are the usual Fourier coefficients, except
that they are functions of the transverse coordinates # and y. This may
seem strange at first to one who is more familiar with the usual Fourier
series in time, where the Fourier coefficients are constants. From this
more conventional point of view, Equation (8.7-13) actually represents an
infinite number of Fourier series, one for each choice of z and y.

Using Equation (8.7-13), the solution for a propagating wave in a peri-
odie structure, Equation (8.7-8) can be written

E(@02) = 3 Ealag)eiooteniin 8719

Defining
Ba = B+ 22" (8.7-15)

we have
E(0) = 3 Eamy)e 8.7-16)

The quantities E.(x,y)e % are known as space harmonics by analogy
with time-domain Fourier series. Now we can impose the necessary con-
dition that our solution should satisfy the wave equation, Equation (8.1-26).
Substituting Equation (8.7-16) into the wave equation, we obtain

V2[ iEn(x,y)e—ianz] + k2[ iE,.(x,y)e'f""‘] =0 (8.7-17)

Since the wave equation is linear, we can interchange the order of dif-
ferentiation and summation, obtaining

> VIE.(z,y)e 8 + KB, (z,y)e P = 0 (8.7-18)
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From this equation we see that if each space harmonic is itself a solution of
the wave equation, that is, if the bracketed term is zero for each value of n,
the summation of space harmonies automatically satisfies the wave equation,
Equation (8.7-17). Thus each space harmonic is chosen as a solution of the
wave equation and consequently must also satisfly Maxwell’'s Equations.
These statements do not imply that each space harmonic satisfies all of the
boundary conditions in the structure; only the complete solution, Equation
(8.7-16), satisfies this requirement. Physically, this means that it is impos-
stble to have wave propagation in a periodic structure consisting solely of one
space harmonic; a mode of propagation must necessarily consist of an infinite
number of space harmonics.

For simplicity in this section we have considered a periodic structure of
infinite length. As in the case of ordinary transmission lines, a finite
length structure will have propagation properties identical to those of the
infinite structure, except that forward and backward traveling waves
must be superimposed to allow for mismatches at the ends of the structure.
In nearly all tubes using periodic structures, the structure is matched at
both ends so as to eliminate reflected waves.

(b) Field Solutions in a Particular Slow-Wave Structure

A simple example may help to clarify some of the above points. Let us
investigate wave propagation in the periodic structure shown in Figure
8.7-4.11 This structure consists of two parallel infinite conducting planes.

Y/
[} X A
REGION 2 | z d
|
| |
REGION 1 rl'n
| |
| 1
Y Y

700 7 /zi Ai A
k-1 ]
F1e. 8.7-4 A slow-wave structure consisting of thin fins mounted perpendicular to

one plate of a parallel-plate line. The direction of propagation is to the right or left.

On the bottom plane are mounted infinitesimally thin conduecting fins of
height & and infinite width (in the direction perpendicular to the page).
The separation from the top of the fins to the top plane is d.

Reference 8g.
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A set of coordinate axes may be chosen as shown, with the origin at the
center between two fins. The periodic spacing is L. Slow-wave propagation
can exist in the z direction.

As in any microwave structure there are many modes of propagation
possible. The mode of lowest frequency is often the simplest to analyze,
and in most structures it is the most commonly used mode. We shall thus
content ourselves with studying the simplest mode of the structure shown
in Figure 8.7-4. Since the structure itself is invariant in the y direction, we
shall assume the electromagnetic fields are also invariant in this direction.
A consequence: of this assumption is that spatial derivatives in the y
direction must be zero.

It will be convenient to divide the space between the planes into two
regions. Region 1 is the space for which —h < x < 0, the region of the
vanes. Region 2 is the gap above the vanes for which 0 < z < d. We can
then solve Maxwell’s Equations separately in the two regions, and finally,
we can equate the tangential components of electric and magnetic field at
the boundary between the two regions, that is, at z = 0. Continuity of the
tangential electric and magnetic field vectors is necessary, as discussed in
Section 8.3. In each region we shall choose our solutions so that the
boundary condition at a perfect conductor of zero tangential electric field
is satisfied.

Region 1 will be considered first. Consider the unit cell bounded by the
two vanes at z = = L/2. The simplest solution here is a standing-wave
solution to Maxwell’s Equations consisting of E, and H, components only.
The desired solution for E, is

E,=Asink(x + h) (8.7-19)

where 4 is an arbitrary constant and k = w/c. It may be verified that
this solution satsifies the wave equation, Equation (8.1-26), and the
boundary condition E, = 0 at z = —h. The solution for the magnetic
field may be obtained from Equation (8.7-19) by use of the second of
Equations (8.1-18),

. oFE, OE,
Jopd, = T (8.7-20)
Using Equation (8.7-19) and the fact that E, is zero, we obtain
H, = —j\/Z—"A cos k(z + h) (8.7-21)

It may be verified that the other components of H are zero.
Floquet’s Theorem, Equation (8.7-7), may be used to find the fields in
region 1 in between the other pairs of vanes. If the gaps are numbered in
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order with N = 0 corresponding to the gap centered at z = 0, N = 1 to the
gap centered at z = L, etc., we then have from Floquet’s Theorem, in all of
region 1,

E, = A sink(zx + h) ¢ 8oL (8.7-22)
H, = —j\/izA cos k(x + h) ¢ NBoL (8.7-23)

Next, we proceed to solve Maxwell’s Equations in region 2. The general
solution is.given by Equation (8.7-16). Let us consider the z component:

E, = ) E,.(x)e #n (8.7-24)

Each space harmonic will satisfy Maxwell’s Equations, or equivalently,
the wave equation, Equation (8.1-26), which in our case can be written

a—2+iﬁ+k2E (x)e #nz = 0 (8.7-25)
ozt ' 922 anlT)e T = a
Performing the z differentiation, we obtain

2

=B+ kz)E.,.(x)e-ﬂ’»z -0 (8.7-26)
or simply
62 — 2 2 —
((.,—x—2 B2+ K )E =0 8.7-27)

This equation has the solution
E,, = B, sinh y,.(z — C,) (8.7-28)
where
Vol = Ba — K
and B, and C, are arbitrary constants. The hyperbolic sine solution rather
than the trigonometric sine solution has been chosen so that 8.2 > k%,

since we are looking for slow waves. Since the phase velocity for a space
harmonic according to Equation (8.7-24) is given by

®

VUpn = E ' (8.7-29)

we see that v, < cif 8, > k = w/e.
Equation (8.7-24) may now be written using Equation (8.7-28):

E, = Y B,sinh v.(z — C,) e (8.7-30)
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The boundary condition that E, = 0 at x = d can be satisfied if we choose
C.,=4d (8.7-31)
so that

E, = X B, sinh y,(x — d) ¢ (8.7-32)

Next we equate the two expressions for E, given by Equations (8.7-22)
and (8.7-32) at the boundary between regions 1 and 2. We can simplify
this matching technique somewhat by noting that Floquet’s Theorem
implies that if solutions are matched at the boundary in one cell of a periodie
structure, they will be matched in all cells. Let us therefore match over the
range —L/2 < z < L/2. We obtain

— > B, sinhy,d e # = Asinkh
for

L
2

<z<Z g (8.7-33)

The coefficients B, can be obtained by the following process. Multiply
both sides of the equation by %=+ and integrate over a period:

— > B.sinh y,,d/

—L/2

Lj2 L/2

e/BnPrizdz = A sin kh f ePmedz (8.7-34)
2

—L/

The right-hand side is easily integrated. The left-hand side can be manip-
ulated as follows, using Equation (8.7-15):

fm ) L {O forn #= m
i Bm—Bu)zdy = ICTILY n— ey = (8.7-35)
~L/2 —L2 Lforn=m
Equation (8.7-34) thus becomes

BamL

sin ——
3 sin kh (8.7-36)

2

—B,.Lsinh y,d = A

By substituting Equation (8.7-36) into Equation (8.7-32), we obtain for
E, in region 2

- sin 2L sinh yuz — d)

B = —Asnkh Y BL2

2

¢ Bnz * (8.7-37)

sinh v.d
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We thus have a complete description of the z component of electric field in
terms of an arbitrary amplitude factor 4.

The other components of the electric and magnetic fields in region 2 may
be obtained as follows. First, because E, = 0 in region 1, it will also be
zero in region 2, since tangential components of E are continuous at the
boundary.

Next, the divergence equation, Equation (8.1-16), of Maxwell’s Equations
is written (using Equation (2) of Appendix XII) as

9E, | 9K, _

= + % = 0 (8.7-38)

since there is no free charge in the region. This equation can be solved for
E,:

dE,
E.=— / a—zax (8.7-39)

Performing the indicated operations on Equation (8.7-37), we obtain
» 8in %—I—' cosh y.(x — d)
E,= —jAsinkh Y, 7 € IBnz (8.7-40)
= I Sinhyad
2
The components of the magnetic field can be obtained by use of Equa-
tions (8.1-18). Since E, = 0, and derivatives with respect to y are also

zero, we see that

H,=H,=0 (8.7-41)
Equations (8.7-37), (8.7-40), and (8.1-18) together give, after simplification,
» sin BnL cosh v,.(z — d)

H, = —josA sinkh 3 — 2
'“’1% sinh v,d

B (8.7-42)

At this point we have a complete description of the fields in the slow-wave
structure, assuming that we know what value of 8, corresponds to a given
frequency of operation. All the values of 8, and ¥, can be obtained from
8, using Equation (8.7-15) and the relation defining v,

vl = Ba — K* (8.7-43)

A sketch of the electric field lines for 8,L = /10 is shown in Figure 8.7-5.

An equation determining 8, from the frequency may be obtained by
matching the tangential components of the magnetic field at the boundary
between regions 1 and 2. However, at this point we must note that the
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7

F1c. 8.7-5 Electric field lines in the slow-wave structure of Figure 8.7-4 for
ﬁoL = 7!'/ 10.

solutions we have obtained are only approximate, due to the neglect of
fringing fields near the vane tips in region 1. Because of this approximation,
the magnetic fields in the two regions will not match point for point at the
boundary. Let us therefore content ourselves with matching at the mid-
point of the gap, where z = 0.

Equating Equations (8.7-21) and (8.7-42) for z = 0 and # = 0, we obtain

. B.L

cot kh _ ism 5 coth v.d
kh - =% B.L

> ¥uh

(8.7-44)

where

k=ow VieEo

2mn

ﬁn=Bo+T
Yo = VB2 — k?

The solutions to this equation are obtained numerically. We shall discuss
the resultant w-8 diagram in the next section.

Let us review briefly what we have accomplished in this section. We
have used approximate solutions to Maxwell’s Equations in a periodic
structure to obtain the slow-wave propagation fields. One may wonder as
to the effect of the approximations involved. It turns out that the resultant
w-B diagram is relatively insensitive to small errors in the shapes of the
field solutions, so that information derived from the -8 diagram can be
taken to be quite accurate. The exact shape of the fields will be somewhat
in error, but this information is usually needed only approximately.

(¢) The Brillouin Diagram

We have seen in Sections (a) and (b) that the electric or magnetic field
for a propagating mode in a slow-wave structure can be expanded as a
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summation of space harmonics, as in Equation (8.7-16), which we repeat
here.

E@y,2) = 2 Ea(g,y)e # (8.7-45)
where
:Hn = 60 + 2%% (87-46)

Each space harmonic propagates in the positive z direction with a
different phase velocity given by

w

Vpn = E (87-47)

Therefore, the mode of propagation cannot be characterized at some
frequency by a unique velocity as it was in the case of ordinary smooth
waveguides. Referring to our previous interpretation of the phase velocity,
we see that ¢t is no longer possible for an ““observer” to move so as to be always
in the same phase of the total field. It is possible for the “observer” to move
in synchronism with only one of the space harmonics that make up the total
field. The phases of the other space harmonics will be continually changing
as viewed by the ‘“observer.” If the “observer” takes a time average of the
total field that he sees over a sufficiently long period of time as he moves in
synchronism with one of the space harmonics, the average obtained will
be that given by the synchronous space harmonic alone, the net contri-
bution of the others being negligible in comparison. It will be useful in
later chapters to bear in mind this interpretation of the phase velocity.

Let us now plot the w-B curve for the periodic structure of Figure 8.7-4.
We will want to make sure we include values of the propagation constant
8. for all of the space harmonics. This w-8 diagram is known as a Brillouin
diagram.?? It is customary to label the abscissa as the 8 axis instead of the
B. axis. Each branch of the Brillouin diagram is numbered according to
the space harmonie to which it refers.

The fundamental space harmonic (n = 0) propagation constant is
obtained as a function of frequency from Equation (8.7-44). Since thisis a
transeendental equation, there will be an infinite number of frequencies
or modes of propagation for each value of 8. This infinite number of modes
should come as no surprise, since we first encountered them in the analysis
of ordinary waveguides. The w-8 curves for the fundamental space har-
monics are shown in Figure 8.7-6, including the higher-order modes. We have

2After L. Brillouin who studied extensively wave propagation in periodic structures.
See Reference 8f.
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included only the modes propagating in the positive z direction for the time
being. The negative propagating modes have branches which are the mirror
images of these about the w axis, as in Figure 8.5-4. We have labeled the
lower branch with a zero, indicating
that it corresponds to the funda-
mental (n = 0) space harmonic.
We shall omit labeling the higher-
order modes. Physically, these
higher modes correspond approxi-
mately to additional half wave-
lengths in region 1 of Figure 8.7-4.
Now from Equation (8.7-46), we
see that the Brillouin diagram
| branches for the other space har-
/ monics are obtained by taking
/ the fundamental space harmonic
[o]
|
J

|

£ —

branches in Figure 8.7-6 and tran-
slating them parallel to the 8 axis
through distances which are integral
multiples of 2#/L. Figure 8.7-7
shows this construction utilized to
obtain the plus-one and minus-one

.. . space harmonies.
F1a. 8.7-6 The branches of the Brillouin . . .
diagram corresponding to the funda- It would be enlightening at this

mental space harmonics of modes prop- point to consider the group velocity
agating in the positive z direction. in a periodic structure. It is defined
as in Section 8.5 for ordinary wave-

o T —
L I

guides (Equation (8.5-27)):
_ 0w
R
It has the same physical significance as before; that is, it is the velocity at
which energy is transported down the periodic structure. Since all of the
space harmonics must be taken together to constitute a mode of prop-
agation, we would expect all of them to have the same group velocity,
corresponding to the velocity of energy transport. A glance at Figure
8.7-7 shows that this is indeed the case. All of the branches for any mode of
propagation have the same slope at any given frequency, hence, the same
group velocity. Group and phase velocities are measured by geometrical
constructions as in Figure 8.5-2. It should be noted that no equation similar
to Equation (8.5-28) exists for slow-wave structures.

Figure 8.7-7 also shows that the minus space harmonics (n = —1,
—2, ete.) have phase velocities that are negative, albeit the group veloc-

Vg

(8.7-48)
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Fic. 8.7-7 Branches of the Brillouin diagram for the three lowest space harmonics
of modes propagating in the positive z direction.

ity is positive. This is an interesting property of periodic structures which
has no parallel in the smooth waveguide case. This means that an electron
“observer”’ can remain in synchronism with a wave which is actually trans-
porting energy in the opposite direction. This remarkable property has
made possible the backward-wave oscillator and M-Carcinotron which will
be described in later chapters.

Because the slow-wave structure shown in Figure 8.7-4 consists of two
separate conducting members, it has no lower cutoff frequency, and in
fact it propagates signals with frequencies ranging down to zero frequency,
as is evident from the Brillouin diagram.

The branches marked n = —1, 0, and +1 in Figure 8.7-7 correspond to
the principal mode of propagation. The broken lines in the figure have
slopes corresponding to phase velocities of +c¢ and —¢, where ¢ is the veloc-
ity of light. We see that all spatial harmonies of the principal mode of
propagation lie either to the right or to the left of the v, = ¢ lines rather
than between these lines. This means that the phase velocities of the
fundamental and higher-order space harmonics of the principal mode are of
magnitude less than the velocity of light. Furthermore, the phase veloc-
ity of the n = 1 space harmonic of the principal mode is less than that of
the fundamental, or n = 0 space harmonic, and the phase velocity of the
n = 2 space harmonic is less than that of the n = 1 space harmonic.
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So far we have considered energy propagating solely in the positive z
direction. The branches for the negative propagating modes are obtained
by simply reflecting all the branches of Figure 8.7-7 about the w axis, as in
Figure 8.7-8, where the complete Brillouin diagram is shown. It is seen that

\

27
L

£

am 3T
L L

R

_
L

rliy

B —>

Fia. 8.7-8 Complete Brillouin diagram for the periodic structure of Figure 8.7-4.

all of these additional branches have negative group velocities, as expected.
The numbers of these additional branches are chosen so as to correspond to
the reflected branches.

(d) Power Flow

In order to complete our discussion of periodic structures we must con-
sider a means of calculating power flow from a knowledge of the electro-
magnetic fields of a propagating mode.

Equation (8.5-26) states that the power flow in a smooth waveguide is
given by the produect of the group velocity and the energy stored per unit
length.’® Now, for a lossless periodic structure Floquet’s Theorem, Equa-
tion (8.7-7), states that the fields in all cells are equal in magnitude, dif-
fering only in phase. This means that the stored energy in each unit cell

13n cases where the electromagnetic fields are known only approximately, this gives
a more accurate evaluation of the power flow than does integration of the Poynting
vector.
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of the periodic structure is the same as that in all the others. Hence, the
stored energy per unit length can be simply calculated by taking the stored
energy in any one unit cell and dividing by the length of the cell. With
this adaptation, Equation (8.5-26) can be used to calculate the power flow in
a periodie structure. It may be written as

P = UgT (8.7-49)

where W, is the time average energy stored per cell and L is the length of
the cell.

In calculating the average stored energy per period, it is convenient to
realize that the time average stored electric energy per period is equal to the
time average stored magnetic energy. Thus it is necessary to calculate only
the average stored energy due to either the magnetic or electric fields and
multiply this by two. This relationship can be proved rigorously for a
periodic structure, but the proof is rather long and complicated.

As an example, we may compute the power flow per unit width in the
periodic structure of Figure 8.7-4. We have already solved for the field
components, finding expressions for E, and H, in region 1 and E,, E,, and
H, in region 2, the other components being zero. In finding the stored
energy it will be easier to use the magnetic field expressions, since only one
compounent is involved.

The time average stored energy per cell (see Appendix XIV) is given by

Wi =5 / | H |2dv (8.7-50)
unit cell
Since the structure is of infinite width, we shall determine only the power

flow per unit width, designated

2

unit cell

Wi, = L2 / / | H, |*dzdx (8.7-51)

where use is made of the fact that H, = H, = 0.
The contribution to this integral in region 1 is obtained by using Equation
(8.7-21):

0

W s = %s,,LA2 / cost k(@ + hdz

sin 2kh] (8.7-52)

8,,LhA2|: 1 + W

NP

14Reference 8g, pp. 10-14.
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In region 2, H, is given by Equation (8.7-42), repeated below:

» Sin —B—;—Ii cosh v,(z — d)
H, = —jwe,A sinkh 3 e #e (8.7-53)

== —”’g"L sinh v.d

| Hy |? is obtained by multiplying this quantity by its conjugate,

» Sin bnL cosh yu(z — d)

H* = +josod sinkh 3 — ,,,2L cHitme (8.7-54)
5

sinh y,d

Equation (8.7-51) becomes, for region 2,

d (L/2
Wiee = $uw'etA?sin?kh 2 3, ] / CC neF @ 1L =2yl
m n Jo J—L/

(8.7-55)
where we have written

sin B;L cosh v.(x — d)
C,=
Aol b yd
2
1.6 I
Vp=C
1.4 l il "]
’ // P
1.0 /
kh
0.8 ]
0.6
0.4 /
0.2
g
o o s 37 T
4 2 4
ﬁol- —

Fie. 8.7-9 Fundamental branch of the Brillouin diagram for the slow-wave struc-
ture of Figure 8.7-4, with dimensions given by A/d = 4 and A/L = 5.
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Performing the z integration, using Equation (8.7-35), we obtain

. BnL
% 242, sin2k S Sm—z— cosh? v.(x — d)
Wsz—-z-noweoALsm h_zm TB.L Zﬁ sinh? v.d dx
Yn 9
(8.7-56)
Integrating this expression and simplifying, we obtain
N .
= — 2 2 n! _
W Lu s,,LdA sin? kh ); vA TBL Sy 8757
2

The total time average stored energy is the sum of that given by Equations
(8.7-52) and (8.7-57). Although Equation (8.7-57) is complicated, it is
easily evaluated, since the series converges quite rapidly.

Next, we can compute the power flow, using Equation®(8.7-49) for a par-
ticular geometry of the finned structure shown in Figure 8.7-4. Consider
a structure with dimensions chosen such that h/d = 4 and /L = 5. Equa-
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Fic. 8.7-10 Power per unit width in the structure of Figure 8.74 for a vane tip-to-
tip voltage of one volt. h/d = 4 and /L = 5.



290 PRINCIPLES OF ELECTRON TUBES

tion (8.7-44) is solved numerically to obtain the fundamental space har-
monic branch of the Brillouin diagram for the lowest frequency mode.
This is shown in Figure 8.7-9. A line with slope equal to the velocity of
light is drawn in for reference. We note, as before, that the phase velocity
at every point on the curve is less than the velocity of light. The upper
cutoff frequency is approximately that for which the vanes are a quarter
wavelength long. We might have expected this, since the input impedance
to a quarter wavelength shorted line is infinite, presenting an open circuit as
far as axial current flow is concerned.

Having thus determined the relationship between » and 8., we can pro-
ceed to calculate the power flow. It will be more interesting here to deal
with an actual structure, designed for a specific operating frequency. Let
us choose dimensions such that the mode cuts off at 10 Ge. This occurs for

h = 0.706 cm
L =0.141cm = h/5
d = 0.1766 cm = h/4

The power flow per unit width of the structure is presented in Figure
8.7-10 as a function of 8.L. This curve is obtained by multiplying the
group velocity by the time average stored .energy per unit length, where
the former quantity is obtained by measuring slopes-in Figure 8.7-9. The
power flow given is that amount required to produce a peak voltage of
one volt from one vane tip to the next. From Equation (8.7-19) we see that
this occurs for

E.(0)L = ALsinkh = 1 volt

The power flow goes to zero as SL approaches 7 because the group velocity
goes to zero. On the other hand, as 8L goes to zero, we approach the de
condition where the top plate is all at one potential and the fins are all at
the opposite potential. It becomes more and more difficult to maintain a
voltage difference of one volt from one vane to the next, and the power
required becomes infinitely large.

PROBLEMS

8.1 The equivalent circuit for the cavity in Figure 8-2 is given by a resistance,
capacitance, and inductance in parallel. (a) Calculate the values of the capacitance
and inductance at 3000 Mc for the dimensions given in the text. (b) The magnetic
field in the inductive sections of the cavity can be written
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where 2z is measured from the top or bottom wall, respectively, and I is the current
through the equivalent circuit inductance. Using Equation (8.4-19), find an ex-
pression for the ohmic power loss in the cavity at resonance for the dimensions
given in the text. From this power loss find an expression for the resistance in the
equivalent circuit. Neglect losses in the capacitive region of the cavity.

8.2 Scaling laws apply exactly to microwave structures whose walls are perfect
conductors and approximately to others. The scaling law may be stated mathemati-
cally as follows. If E(z,y,z,wt) is a solution to the wave equation, then E(Kz,Ky,Kz,
Kwt) is also a solution, where K is a numerical constant. Demonstrate the validity
of this statement.

8.3 Suppose that the cavity of Problem 8.1 is scaled to be resonant at K times
3000 Mec. (a) What are the resistance, capacitance, and inductance of the equivalent
circuit for the new cavity, assuming the cavity walls are made of the same material?
(b) What is the ratio of the @’s of the two circuits, where @ = R/wL.

8.4 By applying Stoke’s theorem to Equation (8.1-14) show that the component
of magnetic field perpendicular to a perfect conductor is zero, given that the parallel
component of electric field is zero.

8.5 Show that the resistive power loss in a conductor may be derived assuming a
uniform current density in a wall of a thickness equal to the skin depth, where the
wall current per unit width is given by

I,=/ Jdz
°

and J., is given by Equation (8.4-13).

8.6 Slow-wave structures may sometimes be represented by an equivalent
circuit consisting of a uniform lossless transmission line periodically loaded by either
a series or a shunt reactance. If Z, = 1/Y, is the characteristic impedance and
@, is the phase shift per period of the unloaded line, then periodic shunt loading due
to a susceptance B results in the relation

B
cos B.L = cos ¢, — 27, sing,
where 8, is the periodic phase shift of the periodically loaded structure. Similarly,
for periodie series loading due to a reactance X, one obtains

X .
cos B,L = cos ¢o — o7, Sine.

Prove either one of these relationships using the fact that corresponding voltages
and currents in adjacent cells are related by the factor e=#L. Use the results of
uniform transmission line theory which state that the input and output voltages and
currents for a line of electrical length ¢, are related by:

Vin = Voutcos Do + JI outZ oSN @Yo
Iin = Iouteos ¢, + jVourYosin @,

8.7 How is Equation (8.7-37) modified if the vanes of Figure 8.7-4 have a finite
thickness A?
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8.8 From Equation (8.7-37) compute the relative magnitudes of then = 0, =1,
=2 gpace harmonics at the frequency for which 8, = 7/2. Compute them at the
value of z for which they are a maximum.

8.9 A slow-wave structure has an equivalent circuit consisting of a cascade of
filter sections whose shunt arm is a pure capacitance C and whose series arm is
an open-circuited transmission line. The transmission line has a characteristic
admittance of 3w,C, where w, is the lowest radian resonant frequency of the line;
i.e., the susceptance of the series arm is given by B, = }w.C tan (rw/2w,). Sketch
the Brillouin diagram over the range 0 < w < 4w, and —27 < L < 27. Deter-
mine the cutoff frequencies accurately and then qualitatively sketch in the curves.
Make use of the filter formula cos 8,L = 1 4+ B./2B,;, where B; is the susceptance of
the shunt arm.

8.10 By studying the symmetries of a slow-wave structure one may deduce cer-
tain facts about its space harmonics. In the figure is shown an interdigital line,
assumed to be infinitesimally thin in the y direction. This structure has a symmetry
such that a translation of L/2 in the z direction accompanied by a reflection about
the y-z plane results in the structure mapping back onto itself.

PR
Problem 8.10

The solution for the electric field near x = 0 is of the form

E, = Z (4, cos kx + B, sin kz)e~1wle—ibne

Because of the symmetry described above we can replace z by z + (L/2) and z by
—z, and the resulting expression for E, can differ from the original only by a com-
plex constant. Use these facts to show that either A, = 0 for n odd and B,, = 0 for
n even (symmetric mode), or else 4, = 0 for n even and B, = 0 for n odd (anti-
symmetric mode).
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