Chapter 10

TRAVELING-WAVE AMPLIFIERS

The multicavity klystron amplifier described in the previous chapter was
shown to have high gain and efficiency at microwave frequencies. How-
ever, its fractional bandwidth was found to be at most a few per cent. The
fractional bandwidth is essentially determined by the cavity @’s. Lowering
these @’s results in greater bandwidth, but the overall gain is reduced, as
shown by Equation (9.4-17). Let us look for modifications of the multi-
cavity-klystron-amplifier structure which will increase the bandwidth
without greatly reducing the gain.

The three-cavity klystron amplifier is shown in Figure 10-1(a). The Q’s
could be reduced by increasing the resistive loading of each cavity, either
by increasing the cavity losses or by coupling each cavity to an external
dissipative load. However, the power dissipated in this extra loading would
be wasted. Instead, let us couple each cavity to a common transmission
line, adjusting either the line length between cavities or the beam voltage
so that the transmission line current arrives at the second and third cavities
in phase with the current induced in these cavities by the electron beam.
A suitable arrangement is shown in Figure 10-1(b). The.transmission line
loading has the effect. of lowering the cavity @’s without a corresponding
power loss. The microwave power is fed forward along the transmission
line, increasing the voltage in each cavity and finally appearing at the out-
put cavity.

We can go one step further, introducing additional cavities between the
three we already have, as in Figure 10-1(c). Successive cavity gaps are now
closer than a quarter-plasma-wave length, so that the beam becomes only
partially bunched between successive cavities. Nevertheless, the additional
cavities result in a higher gain per unit length of the tube, as we shall see
later, although the gain per cavity is less. As in Figure 10-1(b), the operat-
ing conditions are such that the transmission line current arrives at each
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Fic. 10-1 Evolution of a traveling-wave amplifier from a multicavity klystron.
(a) Multicavity klystron. (b) Multicavity kiystron whose cavities are coupled by a
transmission line. (¢) Traveling-wave amplifier.

cavity in phase with the induced current due to the beam. The tube of
Figure 10-1(c) is a traveling-wave amplifier.

One may ask: “What is the effect of the transmission line energy that
travels to the left from each cavity?” In a properly designed traveling-
wave amplifier, the backward-traveling energy contributions from suc-
cessive cavities are of such a phase that they cancel, and thus there is no
appreciable net amount of energy traveling in the backward direction.!

1In the backward-wave oscillator (Chapter 11), these backward-traveling contributions
do add in phase, producing positive feedback and hence oscillations.



TRAVELING-WAVE AMPLIFIERS 351

The assemblage of coupled cavities constitutes a slow-wave structure.
As we have seen in Chapter 8, the slow-wave structure ean be characterized
by a Brillouin diagram, as in Figure 8.7-8. The phase shift per period of the
fundamental wave on the circuit is given by

61 = B,L (10-1)

where 8, is the phase shift per unit length, and L is the period.

The electrons take a time T' = L/u, in traveling from one cavity to
another. If we wish a given electron to see the same phase of the rf signal
as it passes through successive cavities, the phase change in a given cavity
in time T must be 6; + 2n7. Hence

o= o +T2n7r _ 8.L +L2n1r)uo (10-2)
Setting 8. = w/u,, we obtain
Be = B0+ 2%’ = Bn (10-3)

where 8, is the phase shift per unit length of the n* space harmonic
Equation (10-3) may also be stated as

Uo = Upy (10-4)

where v,, = w/Bx is the space-harmonic phase velocity. Thus, traveling-
wave amplification is obtained when the de beam velocity is approximately
equal to the phase velocity of the fundamental or any of the space harmonies
with positive group velocity. Large fractional bandwidths are possible,
since slow-wave structures may be designed with Equation (10-4) holding
over a considerable frequency range.

Because of the large number of periods in practical slow-wave structures
and the eontinuous nature of some (the helix, for example), it is convenient
to treat the amplification process as the continuous interaction of velocity
and convection-current waves on an electron beam with an electromagnetic
wave propagating along the slow-wave circuit. This circuit wave is the
space harmonic in synchronism with the beam, synchronism being defined
by Equation (10-4). The nonsynchronous space harmonics have no net
interaction with the electrons, and so they may be neglected. Historically,
this was the approach first used in the discovery and analysis of the travel-
ing-wave amplifier.

The interaction between an electron stream and a traveling-electro-
magnetic wave is illustrated in Figure 10-2, where disc electrons are used,
as in Chapter 9. We view the interaction from a reference frame traveling
in synchronism with the electromagnetic wave, for which the axial com-
ponent of electric field is shown. In practice, the dc velocity of the electrons
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Fic. 10-2 Electron discs interacting with a traveling wave. The arrows indicate

the direction of the force on the electrons due to the wave. Figure (a) corresponds to

the input end of the slow-wave structure. The situations presented in Figures (b),
(c), and (d) are found at positions successively farther down the tube.

is adjusted to be slightly greater than that of the electromagnetic wave;

consequently the electrons drift to the right in the reference frame.
Figure 10-2(a) shows the conditions at the input to the slow-wave struc-

ture. The discs are uniformly spaced. Axial electric field exists due to volt-
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age on the slow-wave structure from the input waveguide. This electric
field exerts a force to the left on dises 4, B, C, D, and E and to the right on
dises G, H, I, J, and K. These forces cause the electrons to begin to form
a bunch centered about disc L.

Figure 10-2(b) shows the conditions farther down the tube. Since the
de velocity of the electrons is slightly greater than the wave velocity, disc
L has drifted into a retarding electric field, and the bunch has drifted with
it. Since more electrons are in a retarding field than in an accelerating
field, a net transfer of energy occurs from the beam to the electromagnetic
field, thus increasing the axial electric field slightly.

In Figure 10-2(c), we observe what happens still farther down the tube.
The bunch continues to become more compact and it drifts farther to the
right with respect to the wave. This brings more electrons into a retarding
field, and the electromagnetic wave grows in amplitude.

Figure 10-2(d) shows the conditions near the end of the tube. The bunch
is even tighter, and most of the electrons are in a retarding field. An ap-
preciable fraction of the kinetic energy of the electrons has been converted
into energy stored in the electromagnetic field, and the amplitude of the
field has greatly increased. The amplified wave then propagates out
through the output waveguide to the load.

We note that the velocity modulation produced by the circuit electric
field and the subsequent conversion to density modulation is used to
transer energy from the beam to the circuit, just as in a klystron. How-
ever, unlike a klystron, velocity modulation, conversion to current modu-
lation, and the inducing of currents into the circuit oceur simultaneously
and continuously along the whole length of the slow-wave structure.

In the following sections we shall consider the quantitative aspects of
this interaction process.

10.1 Theory of the Traveling-Wave Amplifier

We shall consider the interaction process in the traveling-wave amplifier
in two parts.2 First, we shall describe the motion of the electrons which
results from the rf electric fields due to both the rf circuit voltage and the
rf space charge.* We have already considered a similar physical problem
in Section 9.3, except in that case the space charge was the only source of
electric field forces. The second part of this development concerns the
manner in which the ecircuit voltage and current build up as current is
induced into the circuit by the rf current in the electron beam. In the

2Reference 10a, Chapters 1 and 8. Reference 10b, Chapter 7.
3The forces due to the rf magnetic field are negligible in comparigon with those due to
the rf electric field.
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development that follows, we shall derive two important equations,
one giving the ac current induced on the beam by the rf field and one giving
the rf field resulting from the modulated beam. These two equations can
then be solved simultaneously to determine the self-consistent relations for
the circuit and beam quantities.

We consider only the space harmonic of the circuit field in synchronism
with the beam, as discussed in the introduction, since the other space
harmonics travel at different phase velocities and have no cumulative
interaction with the electrons.

As in the previous chapter, we consider only the rf forces, assuming that
the de forces are either zero or balanced by one of the focusing schemes
described in Section 3.4. For simplicity, we assume rf motion of the elec-
trons is possible only in the axial direction, as is the case for a strong axial
magnetic field.

Script letters will be used in this section to denote time-varying quanti-
ties to distinguish them from phasor quantities.

The rf beam quantities are assumed small compared with their de
counterparts, as in Section 9.3. Under this small-signal assumption,
nonlinear terms in the equations of motion can be neglected, and we obtain
only linear differential equations. We shall therefore obtain wavelike solu-
tions for the various quantities of the form

U = Re[ue™tT?] (10.1-1)
where u is a phasor quantity having no time or z dependence. We thus
introduce a generalized phasor notation. In this notation, the phasor
quantity is multiplied by

lwt—Tz

before taking the real part. Using this notation, we have

‘1—"; = Re[joouetT7| (10.1-2)
and
B = Re[—Tuer (10.1-3)

so that partial differentiations with respect to time and z correspond re-
spectively to multiplication of the phasor quantity by jw and —T. Since
all the rf quantities, both circuit and beam, have variations of the form
given by Equation (10.1-1), we may write the various physical equations
in the phasor notation, omitting the exponential factor.

From the description of traveling-wave interaction given in the intro-
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duction, we would expect T' to have an imaginary part approximately
equal to jB. = jw/uo.

(a) The Electronic Equation

The total instantaneous beam velocity, convection current, and charge
density are written in the mixed phasor notation as

Utot = Uo + U (10.1-4)
itot = —Io + 7 (10.1-5)
Ptot = —Po + (10.1-6)

where u, 7, and p are phasors representing the rf components in the notation
of Equation (10.1-1).4

We shall assume for simplicity that the various quantities are uniform
across any transverse plane of the beam. Equation (9.3-12) for the convec-
tion current density can be written as

1 = (Uop — pout)S (10.1-7)
where S is the cross-sectional area of the beam. The equation of continuity
(1.3-2) is written for the phasor quantities as

—T¢ = —jwpS (10.1-8)
Combining these two equations to eliminate p, we obtain
_jw — UL,
JoposS
relating the rf velocity and convection current.
The acceleration of an electron is given by Equation (1.1-1) as

daw
d

u = (10.1-9)

= —%s,r (10.1-10)

where &.r is the total instantaneous rf electric field as seen by the electron.
This field is the sum of two contributions, space charge and the synchronous
space harmonie due to the circuit voltage. Since the velocity of an electron
is a function of both position and time, the total derivative in Equation
(10.1-10) must be written as

U dude (10.1-11)
dt at dz dt

4The use of the symbol 7 as a phasor quantity representing the beam convection
current has become standard in microwave tube work. Unfortunately, this symbol is
also used for instantaneous circuit current. The latter usage will be avoided in this and
succeeding chapters on microwave tubes to avoid confusion.
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For small-signal levels 82/¢ is approximately given by the de beam velocity.

Thus
. du U iU

7= + U, (10.1-12)
Equation (10.1-10) then becomes in the phasor notation:
(jo — uT)u = —%E,T
= —Z(Bun + Eu) (10.1-13)

where E,, is the axial component of electric field contributed by the syn-
chronous space harmonic, and E.,. is the field due to space charge.

In order to evaluate the field due to space charge, we merely need to solve
Poisson’s Equation, Equation (1.4-9), where p is given by the rf space
charge. This will be done using a one-dimensional beam of infinite eross
section, with the effect of a finite beam diameter accounted for as in Section
9.3. Poisson’s Equation for the one-dimensional beam is given in the phasor
notation by

~TB.. =% (10.1-14)
Using Equation (10.1-8), we obtain a simple relationship between E...
and the convection current:
.1
eS8
For a finite beam, it was shown in Section 9.3 that the force due to space
charge is reduced by the space-charge reduction factor B%. Thus we have
for a finite beam

E, = (10.1-15)

E.. = ijoﬁs (10.1-16)

This may be written in terms of the reduced plasma frequency as

Euc = .7

meg? .
” ,)Swz (10.1-17)
where use has been made of Equations (9.3-23) and (9.3-30).

Finally, Equations (10.1-9), (10.1-13), and (10.1-17) can be combined to
eliminate E... and u. Thus we obtain

BLEwm
2Vo[ (T — jB) + ;’—]

This equation is called the electronic equation, since it determines the ac
beam convection current ¢ resulting from a given circuit voltage, as char-

2‘:

(10.1-18)
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acterized by the space harmonic E,,. The time and z dependence of ¢ and
E,, are as in Equation (10.1-1).

() The Circuit Equation

The convection current in the beam causes current to be induced in the
circuit. This induced current adds to current already present in the circuit,
causing the circuit power to increase with distance. Shortly, we shall
derive an equation expressing this relationship.

It will be convenient to have a parameter that relates the space-harmonic
amplitude of the electric field to the total power flow on the slow-wave
circuit. Let us define the beam interaction impedance (or beam-coupling
impedance) for the nt* space harmonic as
K. — J | E..|*dS

" 28.2PS

where | E., | is the amplitude of the axial electric field of the n** space
harmonic, 8, is the phase constant of the n* space harmonic, P is the
average circuit power flow, S is the cross-sectional area of the beam, and the
area integral is taken over the cross section of the beam. For brevity, we
shall refer to this quantity as the impedance. We shall find later that high
impedance leads to high gain per unit length of the slow-wave circuit. In
order to obtain high impedance, it is important that the electric field be
concentrated in the vicinity of the electron beam. This precludes the use of
dielectric loaded structures, where the electric field stored in the dielectric
does not contribute to the interaction with the electron beam.

(10.1-19)

As an example, we can calculate the impedance for the fundamental space
harmonic of the slow-wave structure described in connection with Figure 8.7-10.
The impedance is a function of the point of operation; we shall calculate it for
BL = w/4. Assume a very thin, cylindrical beam which just grazes the top of the
fingers of the structure, shown in Figure 8.7-4. Assuming that the structure is 1
cm wide, Figure 8.7-10 gives

P = 0.17 mw
for 1 volt from one vane tip to the next, or
AL sin kb = 1 volt

The magnitude of the fundamental space harmonic at the tips of the vanes is
obtained from Equation (8.7-37) as

. .o
sing | sing
| Eo| = Asin kh? =3 ?VOlt
8 8

0.974% volt
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Equation (10.1-19) for a thin beam becomes

K = [Eo? (0.974)
o ap 2
282F 2(%) (0.00017)
= 4520 ohms

For a thick beam the impedance would be lower, since E., is strongest at the vane
tips.

From Equation (10.1-19), we can define the instantaneous power flow
along the slow-wave structure as
8zn2
P= 5K,
where &,, is the instantaneous value of the space harmonic averaged over
the beam cross section as in Equation (10.1-19). Differentiating this
expression, we obtain

(10.1-20)

282nd8zn '
9P = 3K,

This equation expresses the change in instantaneous power flow due to an
increment in the instantaneous value of the space harmonic.?

(10.1-21)

€zn-+dEzn =— |*—€zn-
Eane —*| | ==&+ +d€sns
_— —— — ——— cIRCUIT
€zn++ Ezn-
g .
L | } BEAM
-
7|
.

Ti6. 10.1-1 Interaction of a short segment of convection current with the rf electric
fields due to a slow-wave structure. The arrows above the circuit indicate directions
of propagation.

Next consider Figure 10.1-1. The beam is divided up into short segments
of length dz. Consider a typical segment in which the convection current
has the instantaneous value é. This current segment induces currents in the
circuit. These circuit currents give rise to electromagnetic waves which
propagate in both directions from the point on the circuit adjacent to the

sFor those troubled by the definition of Equation (10.1-20), an alternative derivation
of Equation (10.1-21) consists of computing the instantaneous change in electric stored
energy and applying Equation (8.5-26).
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current segment, Let &.._ and &.., be the instantaneous values of the nt*
order space harmonics moving to the left and to the right, respectively, at
this point on the circuit. The induced currents due to this segment of con-
vection current causes &..— to change by d§.,_ and €., to change by d&.,,.
Because of symmetry, we can say that

8o = duny (10.1-22)

in other words, the incremental changes in amplitude of the waves traveling
in opposite directions from the point of induction are equal.

The change in instantaneous power flow for each direction is given by
Equation (10.1-21). Therefore, the total instantaneous transfer of power
to the circuit is given by:

dp = dp_ + dp,
_ 2
= 5K
2

= ﬁ”_zK-:(gzn— + 8zn+)dgzn—

Szn—dgzn— + 8zn+d8zn+]

- E%-{—"(s,n_ + 8o )duns (10.1-23)

where use has been made of Equation (10.1-22).

The incremental instantaneous power flow into the circuit from the
length dz of beam is given by®

dp = —i8.dz (10.1-24)

where 3 is the instantaneous value of the convection current, and &, is the
total electric field resulting from the wave on the slow-wave circuit. As dis-
cussed previously, all space harmonics are neglected, insofar as they
interact with the beam, except the one in synchronism with the beam. Thus,
in our case, Equation (10.1-24) becomes

dp = —8(Ean + Eany)dz (10.1-25)

for the convection current segment of Figure 10.1-1. Equations (10.1-23)
and (10.1-25) can be combined to yield

d8sn. = d8iny = —3B,2K ,idz (10.1-26)
This may be written in the phasor notation as
GE. o = dE... = —3B.2K 4idz (10.1-27)

Thus, we have an expression for the incremental waves propagating away
from a point on the circuit in terms of the convection current which induces
them.

8This expression may be derived directly from Maxwell’'s Equations. See Reference
10.1.
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Let T, = & + jB. be the complex propagation constant for the n® space
harmonie.

Let us write an expression for the total space-harmonic field at an arbi-
trary point (¢ = a). This is the sum of three contributions, as follows:

A. The power coming from the input waveguide causes a field E,,(0) at
the beginning of the circuit (z = 0). Thus we have at z = a,

EznA(a) = E"‘(O)E—I‘oa (10.1-28)
B. The superposition of the incremental waves dE... arriving at z = a
from the left is given by
Ean(a) = / e_I‘a(a_‘)dEzn+ . (10.1-29)
0

C. The superposition of the incremental waves dE,,— arriving from the
right is given by

l
E.ncla) = / ¢Toeadl,, (10.1-30)

where  is the total circuit length. The total field at z = a is given by the
sum of these three contributions
i

E..(a) = E..(0)eToe — %B,?K,, / teTole=ady — %B,?K,. / 1 ToGma)dy
0 a
(10.1-31)

where use has heen made of Equation (10.1-27). We can replace the variable
of integration in the definite integrals by r and we replace a by z, an arbitrary
point, obtaining
z 1
Eunl@) = Eun(0)6 ™ — 38K, / i) Tedr — 262K, f i(r) oy
0 z
(10.1-32)

Thus we have an integral equation relating the field at any point to the
convection current on the beam.

Equation (10.1-32) is readily converted to a differential equation by
differentiation with respect to z. In differentiating we must be careful to
handle the integrals correctly, since the limits are functions of 27. Two suc-

"The following formula must be used: If

B(2)
I(z) = / F(r,2)dr

(z)
then

ar  [Por ds do
d_x—/a Edf‘i_F(B’z)d_z —F(a,z)a

See Reference 10.2, p. 353, or any other book on advanced calculus.
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cessive differentiations of Equation (10.1-32) yield

IE,, = T'2E,,(0)e T — %I‘,,"’ﬁ,?K,, / jeTole=ndr
0

1
- %I‘.,zﬂ,ﬁK,, f iRy + T8 2K i (10.1-33)

where the left-hand side results from two successive applications of Equa-
tion (10.1-3). This result may be combined with Equation (10.1-32)
yielding
T.8.2K .t
E.. = I‘;ﬂTI‘,,—z (10.1-34)
This equation is called the circuit equation, since it determines how the cir-
cuit field is affected by convection current in the beam.

(¢) Solutions for Cumulative Interaction

The electronic equation and the circuit equation have been derived on the
assumption that the various fields and beam quantities have a z dependence

of the form

e—I‘z

So far we have not said anything about values for I'. It turns out that
only certain values of T are allowable when we require that the circuit and
electronic equations be simultaneously satisfied.

Upon solving for the ratio E,,/ in both Equations (10.1-18) and (10.1-34)
and equating the results, we obtain

(I — roz)[(r B+ ;—’—:] - jﬂ—“"—"%{" (10.1-35)

the solution of which determines the allowed values of T

We can put this equation in a neater form by defining certain parameters.®
First, we define the small-signal gain parameter C' by the equation

K.I,
3 = -
= v, (10.1-36)

C is a small dimensionless parameter with values usually in the range 0.01
to 0.1.

Next, we define the space-charge parameter QC by?®

QC = 40%2 (10.1-37)

sReference 10a, Chapter 7.
sFor large space charge, QC is computed from the more exact expression \/4QC's =
__wefw Jo

1+ (@o/w)

), see Reference 10.4.
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Since 8. and 8. are approximately equal for synchronism, and since T'
must have a similar imaginary part, we define the dimensionless param-
eters b, d, and & by the equations

T, = jB.(1 + Cb — jCd) (10.1-38)
and
T = j8.(1 + jCs) (10.1-39)
Since T, = a + jB., We see that b and d are real numbers given by
_Bn_ﬁa_uo_vpn -
b= 80 - 0.0 (10.1-40)
and
a
d= X, (10.1-41)

b is a measure of the amount of synchronism between the electrons and the
space harmoniec. d is directly proportional to the circuit attenuation. 4is a
complex number, values of which are determined by solving Equation
(10.1-35).

Equations (10.1-36) to (10.1-39) are substituted into (10.1-35). In so
doing, advantage is taken of the fact that C is small; that is, terms of order
C are neglected in comparison with terms of order unity. After simplifica-
tion, we obtain

1
2= — 4QC 10.1-42
CTET R (10.1-42)
where we have used the approximation
. .
| (10.143)

B¢

Equation (10.1-42) is a cubic equation in the unknown . The solutions,
when introduced into Equation (10.1-39), give us three allowable values for
T, the complex propagation constant for the circuit-beam coupled system.?
From Equation (10.1-42), we note that the solutions are functions of b (the
degree of synchronism), d (the circuit attenuation), and QC (the space
charge).

From Equation (10.1-39), we note that the difference between I' and 78, is
directly proportional to C, which from Equation (10.1-36) is a function of

18ince Equation (10.1-35) is a quartic equation, we see that one root has been lost due
to the approximations we have made. This root corresponds to a backward propagating
wave, which is nonsynchronous with the beam and which is not excited for proper
termination of the circuit.
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the amount of coupling between the beam and the circuit. The stronger
the coupling (the larger K, is), the greater is this difference, as we should
expect for two coupled systems.

Let us examine the nature of the solutions for the simple case:

b=d=QC =0
Equation (10.1-42) reduces to
= —j (10.1-44)

with solutions
51 == —7

& = - —J

0 = (10.1-45)

.,

The values of T are then given by

3 : C
r - — g0 +JB,(1 + §)

_\3 , Y
r = Yoo + 51+ 5)
Ts =381 —C) (10.1-46)

Since the various fields and beam quantities propagate as

€ jot—=Tz

we see that I'; corresponds to a traveling wave whose amplitude grows ex-
ponentially with distance, T'; to one whose amplitude decays exponentially
with distance, and T'; to a wave of constant amplitude. The wave cor-
responding to I'; is termed the growing wave, and it is this wave which is
responsible for the gain in the traveling-wave tube. We shall find that, re-
gardless of the values of d and QC, we shall always obtain one growing wave,
one decaying wave, and one wave of nearly constant amplitude, as long as b
corresponds to operation sufficiently close to synchronism."

We can examine the condition of synchronism for this example. It was
pointed out in connection with Figure 10-2 that the electrons must travel
slightly faster than the wave so that the bunch drifts into a retarding field.
It is clear that the growing wave will predominate as the electrons move
down the tube. Thus, the circuit field depicted in Figure 10-2 near the end

nd, of course, must not be so large as to neutralize the gain of the growing wave.
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of the tube has T, for its propagation constant, corresponding to a phase
velocity given by

w Uy
Y (R ) R (10.1-47)
which is indeed slightly slower than the dc beam velocity. Thus, although
the cold (no electrons) phase velocity v,, is exactly equal to u, from Equa-
tion (10.1-40), the hot phase velocity of the growing wave v, is slower than
1, 'This must be true regardless of the values of b, d, and QC if we are to
obtain amplification.

As a second example, we consider the condition of large space charge.
Let the circuit attenuation be zero (d = 0), for simplicity. Under the condi-
tion that QC is large, we may neglect the first term on the right-hand side of
Equation (10.1-42) in comparison with the second term, obtaining

8= —4QC (10.1-48)
with the solutions
81,85, = £52QC (10.1-49)

From Equation (10.1-39), we obtain
Ty,Ts 22 j8.(1 & 2CVQC)
P~ jﬂ,(l + %“) (10.1-50)

for the growing wave and constant-amplitude wave, respectively. Referring
back to Equations (9.3-40) and (9.3-41), we see that these propagation con-
stants correspond to the slow and fast space-charge waves, respectively.
The approximate form of Equation (10.1-48) does not allow computation of
the real parts associated with these waves. Furthermore, the decaying
wave propagation constant T, is not evaluated at all. Numerical cal-
culations can be used to derive this information directly from Equation
(10.1-42).2 The result of such a calculation is given in Figure 10.1-2, for
QC = 1. The real and imaginary parts of & are defined by

d=1x+7Jy (10.1-51)
We note from this figure that a growing wave (positive values of z) is ob-
tained for b approximately between 0.9 and 2.8, with a maximum value of z,
equal to 0.5. The value of b corresponding to this maximum value of x,
determines the electron velocity for maximum gain. A useful approximate
formula for the maximum value of 2, as a function of QC is®

1
Z1max = W (10.1-52)

12Reference 10a, Chapter 8.
18Reference 10.3.
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Fia. 10.1-2 Real and imaginary parts of the three solutions for é for a traveling-
wave amplifier with zero loss and QC = 1. (From John R. Pierce, Traveling Wave
Tubes, D. Van Nostrand Co., Inc., Princeton, N. J., 1950)

Having determined the three allowed values of the propagation constant
I, which correspond to waves propagating in the forward direction, one can
write an expression for the rf components of the total electric field, the
velocity, and the convection current as

E.nq = E;me ™ + Eupoe ™ + E,re T
U = Ure T - e T | qpe o
T = G117 4 foe T2 - gge T (10.1-53)
The values of the component waves can be found from the initial conditions

at z = 0, the input end of the slow-wave circuit. Since the beam is un-
modulated at this point, we have

u(0) =0
1(0) =0 (10.1-54)

For the same reason, the rf space-charge field is zero and the total electric
field is given by the circuit voltage alone,

Ex(0) = E..(0) (10.1-55)
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The latter quantity may be determined in magnitude from the rf input
power using Equation (10.1-19), which can be written as

| E.n |* = 28.2K.P (10.1-56)

where | E., | is the rms average over the beam cross section. We assume all
the quantities u, <, ete., are similar rms averages.

Before applying the above boundary conditions, we derive certain other
relationships between E.r, u, and 4. First, we introduce Equation (10.1-39)
into (10.1-13), obtaining

Uy = Eva (10.1"'57) '

e

mwC8,
for v = 1,2,3, that is, for each of the three waves. Next, we introduce
Equation (10.1-39) into (10.1-9), obtaining

 — _dpS -
% = Co, Uy (10.1-58)
which with Equation (10.1-57) becomes
. jepoS
i = wa—m?Em (10.1-59)

Equations (10.1-57) and (10.1-59) may be substituted into Equations
(10.1-53) o that the total electric field is the only variable. When this is
done, and the boundary conditions (10.1-54) and (10.1-55) are applied,
Equations (10.1-53) become

Ezn(o) = Ele + EzTZ + EzTS
1 1 1
0= 8_1E'Tl + 6—2Eﬂ'2 + E;EzT3
=1
0,2

Since the 8’s are known, these three simultaneous equations may be solved
to obtain solutions for E.r, E.rs, and E,rs in terms of E,,(0). The solution
for the growing wave is given by

Ele 612

0 E.r + 5—12§E3T2 + 81—2E1T3 (10.1-60)

E.n(0) ~ (1 — 82) (51 — 03) (10.1-61)
We define the initial loss factor A, in decibels by the expression
— Ele .
Ar = log| gy | 4P (10.1-62)

which can be evaluated from Equation (10.1-61).
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The total power gain of the traveling-wave amplifier may be written as

E..(D).
zn(o)

where [ denotes the output end of the slow-wave structure. For a practical
tube where the gain is 20 db or more, the fields at the output end of the
structure are given very accurately by the growing wave alone, so we may
write

gain = 20 log db (10.1-63)

'"le \ db (10.1-64)

gain = 20 log F.0)

This can be written as

gain = 20 log Z’(T(l)—)g:;i ~Tily db (10.1-65)

Since
[Tt | = et (10.1-66)

Equation (10.1-65) becomes

gaing = A; + 208.Cxilloge + A, (10.1-67)

where
4: = 2010g | 22t ap (10.1-68)

2T1

The quantity A, is termed the space-charge loss factor, since it is a measure
of the ratio of the circuit field E., to the total field, at the end of the circuit
where the growing wave predominates. We further define

= (407 log )z, = 54.62: (10.1-69)
and the number of electronic wavelengths on the circuit N by
N =5 (10.1-70)
o

so that Equation (10.1-67) for the gain of a traveling-wave amplifier
becomes

gaing = A, + A: + BCN (10.1-71)

Finally, we must evaluate 4,, the space-charge loss factor. Equation
(10.1-59) may be written for the growing wave as

_ _JensS

i = L B (10.1-72)



368 PRINCIPLES OF ELECTRON TUBES

This equation is combined with Equation (10.1-17) written for the growing
wave to eliminate ;. After simplifying and introducing the definition of QC,
Equation (10.1-37), one obtains

B _ 82+ 4QC
=t (10.1-73)

recalling that E, = E.ui + Eua. From Equation (10.1-68), 4, is thus
given by

db (10.1-74)

2
A2 = 20 log 51_::_24&
1

In conclusion, we write an expression for the gain whenb = d = QC = 0.
From Equations (10.1-45), we calculate

A, = —9.54db
4:=0db
B =473
so that Equation (10.1-71) becomes
gaing = —9.5¢4 + 47.3CN (10.1-75)

(d) Summary of Gain Calculation

Let us review the steps in calculating the gain of a traveling-wave ampli-
fier. Knowing the properties of the beam and the circuit, we calculate
C, N, b, d, and QC as follows:

¢ = [Ii;f]”“ (10.1-36)
- %{ - ;T}"i (10.1-70)
b= "Lﬂjo—‘f" (10.1-40)
d= B% (10.1-41)
QC = oL | (10.1-37)

K, is defined as in Equation (10.1-19) &y, 8;, and 8; are determined as the
three roots of the cubic equation:

1

62 = T ey,
(—=b + jd + j8)

4QC (10.1-42)
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Next, A; and A, are calculated from the equations:
o,

369

A, = 20 log mldb (10.1-62)
and
Az = 201log %ﬂg‘db (10.1-74)
o
0.8 / -\\
L= N
- VAR S
/ /2> Vo NN\
1 7 / VAN
0
. N
| |
-1 )
QC=0,125
o
b

Fic. 10.1-3 Graphs useful in calculating the gain of a traveling-wave amplifier.
d = 0.025. C = 0. Curves for non-zero values of C are given in Reference 10.4.

(Courtesy of Transactions IRE)
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Finally, the gain is computed from the equation:

gaing = A1 + 4: + BCN (10.1-71)
where
B = 54.6x, (10.1-69)

Considerable effort can be saved by using charts which giver;and A = 4,
+ A, directly in terms of b, d, and QC.* Such a chart is shown in Figure
10.1-3, where ; and A are plotted vs. b for d = 0.025 and various values of
QC. By these methods one can calculate the gain of a traveling-wave
amplifier and the variation with frequency. '

10.2 High-Power Tubes

The theory developed in the previous section enables one to calculate the
performance of a traveling-wave amplifier once the properties of the beam
and the slow-wave structure are known. We must know two things about
the slow-wave structure — the Brillouin diagram and the strength of cou-
pling to the electron beam. The latter quantity is measured in terms of the

Fia. 10.2-1 High-power slow-wave structure consisting of a cascade of re-entrant
cavity resonators, with mutual inductive coupling obtained through apertures in
their common walls.

beam-coupling impedance K,. In this section we examine some of the tech-
niques used to evaluate these quantities for a typical high-power structure.

(@) The Brillouin Diagram

The slow-wave structure of Figure 10-1(c) is well suited for high-power
interaction. The large metal surfaces in this structure serve the dual pur-

uReference 10.4. Curves for C-= 0.2 are in error. Corrected curves are given in
Reference 10.5, Figure 4(c).
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pose of keeping rf ohmic losses small and also of providing means for
removing the heat due to beam interception on the re-entrant parts of the
cavities. A simplified version of this structure is presented in Figure 10.2-1.
In this structure, the coupling between cavities is obtained by means of
coupling apertures placed in the inductive portions of the cavities. These
apertures allow portions of the magnetic flux of one cavity to link the
adjacent cavities, so as to provide mutual coupling between cavities.

An equivalent circuit for this structure is shown in Figure 10.2-2. L, and
C, are the inductance and capacitance of each re-entrant cavity, as dis-

M~ M
N r N

Ly Ly L

Iné+ifot In Ine~iPot
LY
e T &
I 1l I
-— -— ——

Ve +ipol VN VNE—J Pob

Fia. 10.2-2 Equivalent circuit for the slow-wave structure of Figure 10.2-1.

discussed in Chapter 8. The inductance is shown as a single turn. M is the
mutual inductance between cavities; obviously it becomes larger as one in-
creases the size of the coupling aperture. Loop currents are shown in each of
the cavities. From Floquet’s Theorem we know that, if the current in the
N'* cavity is Iy, the currents in the N — 1 and N + 1 cavities are given by

I N€+jﬁ°l'

and
ING_]B"L
respectively.
From Kirchhoff’s voltage law, we can write the loop equation for the N
loop as
(ij1 + ]710—)& — joMIyeBol — joMIye®E =0  (10.2-1)
1
This may be simplified to yield
2
cos B,L = ]lc—(l - w—;) (10.2-2)
1 @

where ki = 2M /L, is the coupling coefficient, and w. = 1/4I;C; is the
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radian resonant frequency of the cavity. The upper and lower cutoff fre-
quencies are obtained from Equation (10.2-2) as

,
= < at B.L =0
wa 7, 8

!

and

=2 L= 10.2-3
w1 \/1 %, at B T ( )
For k; = 0, the Brillouin diagram is a horizontal line given by @ = w..
Increasing the coupling increases the width of the passband.

The Brillouin diagram is shown in Figure 10.2-3 for the fundamental and
—1 space harmonics for a value of k; equal to 0.4, as obtained from Equa-
tion (10.2-2). The fundamental is a backward wave, since its group and

1.4
N=0 SPACE n=-1 SPACE -,
\ HARMONIC HARMONIC Z
1.2 >
7
//
1.0
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~———1"

0.8 —
A L
wWe ’,

06 14
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v
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g
7
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0.2 z
A
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4
rd
[¢]
n ” an 27
2 AL 2

Fia. 10.2-3 Brillouin diagram for the slow-wave structure of Figure 10.2-1, for
%1 = 0.4. A voltage line is shown corresponding to typical interaction with the —1
space harmonic for forward wave interaction.

phase velocities are in opposite directions. In the traveling-wave amplifier a
forward wave is necessary for amplification, since the power on the circuit
travels in the same direction as the electron beam. The — 1 space harmonic
is such a wave. The slope of the line joining the origin to point A gives the
phase velocity of the space harmonic at the point A. Since this line is
nearly tangent to the — 1 space-harmonic curve, the phase veloeity is nearly
constant over a moderately wide frequency range. Thus, with the dc beam
velocity equal to this phase velocity, synchronous interaction is obtainable
over a considerable frequency range.
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(b) The Beam Interaction Impedance

In calculating the beam interaction impedance, we shall need an ex-
pression for the total power flow in the circuit. This could be obtained
directly from the equivalent circuit using network theory. However, it is
easier to obtain the power from the group velocity and the average stored
energy per period, as in Section 8.7(d). The average stored energy is equal
to the peak electric stored energy,

Wi =3C| Val? (10.2-4)

where Vy is the voltage across the N gap. The group velocity of the
fundamental is obtained by means of a differentiation of Equation (10.2-2)
as

3
V=g = 5 o3 sin B,L (10.2-5)

All the space harmonics have the same magnitude of group velocity at the
same frequency. From Equation (8.7-49) the power flow in the forward
direction is thus given by

klw"C’ 1

42

P = | Vv |*sin 8.L (10.2-6)

In order to evaluate the impedance by Equation (10.1-19) we need an
expression for the amplitude of the space harmonic. This is obtained by
solving Maxwell’s Equations in the region of the beam.

Consider Figure 10.2-4. A series of concentric cylinders of inside radii
a uniformly spaced along the z axis is shown. The periodic spacing is L,
and the gap between cylinders is 8. The voltage across gap N is V, and
we assume that the electric field across the gap at 7 = a is uniform and equal
to Vu/6.

VN VN+i

-— -—

oA
IR

Fic. 10.2-4 Identical, concentric cylinders uniformly spaced along the z axis.

The gap voltages obey Floquet’s Theorem. The internal fields are analyzed in
terms of space harmonics.

S~
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We confine our attention to the region r < a. The general solution for
the electric field in this region is given by Equation (8.7-16), for which the
z component is

E.(2,y2) = 2 Eealzy)e #» (10.2-7)

As shown in Section 8.7, each space harmonic will by itself satisfy the wave
Equation (8.1-26). The z component of the wave equation for the n*t
space harmonic can be written as

(2 4+ 2z, - 82— K)E. =0 (10.2-8)
axz ay2 zn n zn .

similar to Equation (8.7-27). Since the structure in Figure 10.2-4 has
cylindrical symmetry about the z axis, it will be more convenient to write
the above equation in cylindrical coordinates. The two-dimensional
Laplacian can be written as

3 ik 9% 19 1 9

e 5172—:972-'—;57‘1‘;‘55—02 (10.2-9)
in polar coordinates.® Since the boundary conditions in Figure 10.2-4
have no functional dependence on 8, we look for space harmonics which
also are independent of 8. The last term in Equation (10.2-9) is thus set
equal to zero. Equation (10.2-8) becomes

? 19 . _
[arz + il ]E,,, =0 (10.2-10)
where v,2 = 8.2 — k? and is positive for slow waves. k is equal to w/e.

Equations (10.2-10) may be written in a form recognizable as Bessel’s
Equation,

@ 13, L. _
[3_7‘2 + ; 67' + 7 ]Ezn =0 (10.2'11)
with 7.2 = —v.2 The solution of this equation is well known:
Ezn = BnJo(an) (10.2-12)

where J, is the Bessel function of the first kind of order 0, and B, is an
arbitrary constant. Thus, the solution of Equation (10.2-10) is given by

E.. = BoJ o(jvar) (10.2-13)
This modified Bessel function has a real value despite the fact that the

Reference 10.2, p. 328. This may also be derived using the relations of Appendix
XII together with the definition of the Laplacian of a scalar, V2& =V V&.
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argument is a pure imaginary quantity. This function is of sufficient
importance that it is given its own symbol,
Jo(§7ar) = Lo(var) (10.2-14)

It is plotted in Figure 10.2-5. From this figure we see that the axial electric
field is weakest on the axis and strongest at the circuit. This behavior was
also obtained in the slow-wave structure of Figure 8.7-4. In fact, this is a

4.0

/
/
/

2.0 /

Io(7nM)

0.5

o 0.5 1.0 1.5 2.0 2.5 3.0
Py

Fie. 10.2-5 Modified Bessel function which gives the radial decay of the axial com-
ponent of a cylindrically symmetric space harmonie.

general characteristic of slow-wave structures; the axial field is strongest
at the circuit. Most traveling-wave amplifiers have a value of v,r at the
circuit in the range of 1 to 2 for the synchronous space harmonic. Thus, the
field on the axis may be only half that at the circuit.

Equation (10.2-7) may thus be written as

E(r) = 2 Bul (yar)e (10.2-15)
The space-harmonic amplitudes B, are evaluated by imposing the boundary

conditions at r = a. We take z = 0 to correspond to the center of the Nt
gap. If we confine our attention to the unit cell centered at z = 0, we have
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from Equation (10.2-15):

- ? for|z] < %
Z B I, (yna)e B =

) L
0 for§ <lz| < 3 (10.2-16)

Multiplying both sides of this equation by ¢"#n* and integrating over the
range | z | < L/2, we obtain

sin B &
|4 "2
BaLlirna) = 3 5,

2

(10.2-17)

where use has been made of Equation (8.7-35). The axial electric field is
thus given by the expression

w©

. b
Vy 2 sin Bng Io(yar)

E.(rz2) = I € Bnz (10.2-18)

)
= Bag Lo(vaa)

The impedance for the nt space harmonic is obtained by introducing
Equation (10.2-6) into Equation (10.1-19) together with the space-harmonic
amplitude obtained from Equation (10.2-18). One obtains

2w.?

— 2 2 -
K, = Miw'Mam B.LFwCsn 6L (10.2-19)
where
sin ﬂ,,g
Ml(n) = ) (102-20)
Bn§
is the gap factor for the nt space harmonic, and
1
2 — 2 _
M2(n) SIaz('Yna) ro (‘an)dS (10.2 21)

is the impedance reduction factor obtained by integrating the radial varia-
tion of the electric field over the cross section of the beam. Both factors
are less than or equal to unity.

The impedance for the —1 space harmonic plotted in Figure 10.2-3 is
obtained from Equation (10.2-19) by setting n equal to —1. The result is
plotted in Figure 10.2-6 for k, and /L both equal to 0.4. The impedance
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1.25 \
1.00

NN )
~—

b 37 ' 27
)

Pk
Fic. 10.2-6 Normalized impedance for the —1 space harmonic of the slow-wave
structure of Figure 10.2-1. &k =é/L = 0.4.

is seen to become infinite at both band edges since the group velocity goes
to zero at these frequencies.

(¢) A Numerical Example

As an example we calculate K_, at band center for a typical circuit.
Assume that the cylinders shown in Figure 10.2-4 have the following
dimensions:

a = 2mm
¢ = 2.5 mm
= 2 mm
L = 5mm

The structure is designed for a center frequency of 6000 Mec with k1 = 0.4.
Assume an electron beam of very small diameter on the axis; under this

condition,
1

T T2(y-a)

Using the relation v_* = 8> — k? we obtain

Mo yy?

y_a = 0.9928_,a = 0. 992% ;3_1L = (0.992(0. 4)— 1.87
From Figure 10.2-5,

My = T 2(1 87 = 0.230



378 PRINCIPLES OF ELECTRON TUBES

In calculating the capacitance between cylinders we must make an allow-
ance for fringing effects. It has been found empirically that the capacitance
is about four times that given by the simple parallel plate formula for the
dimensions given. Thus,

0, o 4527 = @) 4711 pt

- )
The ordinate in Figure 10.2-6 is read as 0.1635 at band center. Thus,
_ My_y? _ ~ 0.230 _
K,= 0.1635——%01 = 0.163u(121r‘109)(0'111 X105 9.0 chms

This value of impedance is typical of circuits of this type.

With the above information it is necessary only to specify the beam cur-
rent and structure length to complete the description of the amplifier.
The beam voltage is determined by the synchronism condition, 8. = 8-,
at some frequency within the band.

Operation as a forward-wave amplifier is also possible in higher-order
space harmonics, such as the —2, —38, —4, ete. However, from Equation
(10.2-19), it is seen that the impedance falls off for these higher-space
harmonies, because 8.L is larger and My, and My, are smaller. There-
fore, the lowest possible order forward space harmonic is always used so
as to obtain maximum interaction. This explains why the structure of
Figure 10-1(c) is superior to that of Figure 10-1(b}; for the same voltage, the
latter corresponds to higher space-harmonic interaction, under the usual
condition wg/w K 1.

(d) Description of a Practical Power Traveling-Wave Tube

Figure 10.2-7 shows the construction of the Bell Telephone Laboratories
type M4040 traveling-wave amplifier.® A photograph of the tube is shown
in Figure 10.2-8. This tube was designed to be the ground transmitter tube
in the Telstar experimental satellite communications system. It uses a
slow-wave structure similar to the one in Figure 10.2-1, except that the
inductive coupling holes appear alternately at the top and bottom of the
discs separating the cavities. This is done primarily to prevent inductive
coupling between cavities which are not directly adjacent.

The slow-wave structure actually consists of two separate sections,
nearly equal in length, placed end to end. Each section has its own rf
input and output connections. The input rf signal is introduced onto the
first section close to the electron gun. This signal is amplified by 17 db and
then coupled out into an external sever termination. The electron bunches

16Reference 10.6.
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in the beam induce currents into the second slow-wave structure section,
and another 21 db of gain is produced. The power dissipated in the ex-
ternal sever termination results in an overall gain reduction of approxi-
mately 6 db, so that the net gain is 32 db. Without the beam present, the
first and second sections of the slow-wave structure are completely isolated
from each other. A slow-wave circuit which is terminated at some point
near the middle for waves traveling in either direction is called a severed
circuit.

Fie. 10.2-8 The Bell Telephone Laboratories M4040. The overall height is 117 cm.

A severed circuit is necessary in a traveling-wave tube to prevent oscil-
lations. Since it is impossible to match perfectly the input and output
waveguides to the slow-wave structure over the entire operating frequency
range, small rf reflections are invariably present at both ends of the strue-
ture. Without the sever, the wave reflected from the output connection
travels back to the input with little attenuation and produces another small
reflection. This provides a mechanism for positive feedback, and oscil-
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lations result if the gain between the positions of these two reflections is
large. Thus, severing the circuit keeps the gain per section low enough to
prevent such oscillations.

The M4040 tube has the characteristics given in Table 10.2-1. It is oper-
ated in a solenoid which furnishes & uniform magnetic field of 730 oersteds.:

TaBLE 10.2-1. BTL M4040 OPERATING CHARACTERISTICS

Center frequency, Mc......................... 6390
Beam voltage, kv.............. ... . ... 17
Beam current, amps. . .............. ... ... 1.04
Saturation power output, kw................... 2.6
Electronic efficiency at saturation, %,........... 15
Small-signal gain, db.......................... 32
Small-signal bandwidth (1 db), Mec............. 780

The tube plus solenoid weigh 230 pounds. Only % per cent of the beam
current is intercepted on the slow-wave circuit for small rf power levels;
with output powers near saturation the circuit interception increases to
about 3} per cent. The tube is operated with the collector at the same
voltage as the slow-wave structure, so that approximately 14.5 to 17 kw of
power is dissipated in the water-cooled collector, depending on the rf
signal level. The length of the slow-wave circuit is 26 c¢m, and its inside
diameter is 4.2 mm. The beam interaction impedance is 13 ohms. The
electron gun is a convergent gun somewhat similar to that in Figure 4.5-1(a)
Its perveance is 0.466 X 1078 amp/volts®?. It produces an electron
beam of 2.3 mm diameter.

The ion pumps shown in the figure are electronic vacuum pumps which
help to maintain an extremely high vacuum in the tube under all conditions
of operation. The tube is constructed entirely of metal and ceramic. The
slow-wave structure is made of copper because of the excellent electrical
and thermal conductivity of this metal.

If we compare this tube with the VA-849 klystron amplifier, whose char-
acteristics are given in Table 9.4-1, we note that the traveling-wave tube
has much greater bandwidth and considerably less electronic efficiency.
Thus, a choice between these two types in any particular application would
depend largely upon the relative importance of bandwidth and electronic
efficiency. It should be noted that the overall efficiency of each tube can be
greater than the electronic efficiency if the collector voltage is lowered
below the beam-interaction-space voltage.

10.3 Helix Slow-Wave Circuits

The most common slow-wave structure used in traveling-wave ampli-
fiers is the helix. Helix-type, slow-wave circuits permit large bandwidth and
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high gain per unit length. However, for rf output powers greater than
100 watts or so, a helix-type, slow-wave circuit would become excessively
heated by beam interception and rf losses. Consequently, helix-type,
slow-wave structures are used only at lower power levels.

In order to analyze the operation of the helix traveling-wave amplifier,
we require information about the Brillouin diagram and the beam-coupling
impedance. This information is obtainable by field analysis as in Chapter 8.
However, the field analysis of the helix is a complicated mathematical
problem; in fact, the exact solution for a helix of finite wire diameter has
not been derived. The discussion presented here will be somewhat simpli-
fied, and we shall mention some of the more accurate results.

(@) The Brillouin Diagram for a Helix-Type, Slow-Wave Circuit

The electric field lines surrounding a helix are shown in Figure 10.3-1.
This field pattern moves to the right at a phase velocity corresponding to
the fundamental space harmonic. Unlike the helix of Figure 8.7-2(a), this

Fig. 10.3-1 The electric field lines surrounding a helix at a particular instant.
The pattern travels at a phase velocity corresponding to the fundamental
space harmonic.

helix does not have a surrounding metal tube. The helix in Figure 10.3-1 is
shown unsupported. In practice, it would be supported by small dielectric
rods or a surrounding dielectric cylinder, either of which would perturb
the field pattern. However, we shall neglect this effect.
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The period of the helix is called the pitch and is denoted by the symbol
L. The mean radius of the helix is a. In addition, we define the pitch angle
¥ by the equation

L
tannﬁ = %‘ (103-1)

The wave equation for the z component of electric field is obtained from

Equations (10.2-8) and (10.2-9) as

02 190 19
[W trat e~ "]E =0 1032

In the case of the helix the field quantities are functions of §, the angular
coordinate, since the boundary conditions vary with 8. The space harmonics
necessary to satisfy the helix boundary conditions are of the form"

E.. = R,(r)etinte #n (10.3-3)

where R.(r) is a function of only the radial coordinate for each space
harmonie. The plus-or-minus choice for the 8 dependence is dictated by the
winding sense of the helix. Substituting this assumed solution into Equa-
tion (10.3-2), we obtain

# 19 , N _
[5;2 +og = F]R"(’) =0 (10.3-4)
If we put y.2 = —r,% we recognize this as Bessel’s Equation with the
general solution
Ro(r) = b ul(rar) + caHo®(741) (10.3-5)

where J ,(7,7) is the Bessel function of order n and H,® (r,r) is the Hankel
function of order n. Since 7, = jy., the argument in the above functions
is a purely imaginary number. Nevertheless, the values of the functions
are either purely real or purely imaginary. The following modified Bessel
functions are defined as to have purely real values:®*®

La(yar) = 57 u(Gyar)
Ea(yar) = 5" HaO(rar) (10.3-6)

I(yer), Li(vir), Ko(vor), and Ki(yir) are plotted in Figure 10.3-2. The
I.(y.r) functions go to infinity as r goes to infinity. The K,(v.#) functions

1"Reference 10c, pp. 46, 47.

18]n order to avoid confusion with the beam interaction impedance, the Bessel function
K, (vor) will always be written showing its functional dependence. Tables of the modi-
fied Bessel functions are given in Reference 9.1, pp. 224-243,
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go to infinity as r goes to zero. Thus, R.(r) is given by I.(v.r) inside the

helix and K.(v.r) outside the helix, in order that the fields remain finite
everywhere. Each space harmonic has its maximum amplitude adjacent to

1 /
A L/
., l \K1(7.r‘) Io(ror/
: \ // L(nn

Kol2o

0.5

\\

0 15 20 2.5 3.0
%" OR %7

Il

o
o] [eX

Fie. 10.3-2 Modified Bessel functions. I.(y.r) and Ii(yr) apply to radial varia-
tions of fields within the helix, and K.(y.r) and Ki(yr) apply to fields
» outside the helix.

the helix and decays radially away from the helix, both inside and outside

the helix.
Thus we have the following expressions for the z component of electric

field. Inside the helix,
E. = 3 Bl (yar)einte #ne (10.3-7)

Outside the helix, ]
E, = Y, C.K(ynr)etinte ine (10.3-8)

The amplitudes of the space harmonics are obtainable from the boundary
conditions at the helix surface. This procedure has been carried out for a
helix whose wires are thin tapes,” but not for round wires. After a rather

BReferences 10.7, 10.8.
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lengthy, approximate analysis, one obtains expressions for the Brillouin
diagram and beam interaction impedance. A similar analysis has been
carried out for the sheath helix.® The sheath helix is a mathematical
model consisting of a continuous, cylindrical sheath of currents, all flowing
around the cylinder at the pitch angle. We shall not go through these

analyses, but rather we shall cite some of the results.
First, it is found that the w-8 curve of the fundamental space harmonic

of the tape helix is very nearly given by the «-8 curve of the fundamental
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Fia. 10.3-3 w-8 curve for the fundamental mode of a sheath helix. The velocity-
of-light line is shown for tany = 0.125.
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mode of the sheath helix. The fundamental mode of the sheath helix is
presented in Figure 10.3-3. It is approximately given by a line of constant

slope from the origin corresponding to the phase velocity
(10.3-9)

w
vp, = = = ctan
4 ﬁ ‘p
This value of phase velocity corresponds approximately to that of a wave
traveling around the cylinder at the pitch angle with the velocity of light,
which is the value physical intuition would lead us to expect. (Note that 8
here is equal to 2x/)\,, where X, is the wavelength of the field pattern shown

in Figure 10.3-1.) Let us approximate the actual w-8 curve of the sheath

helix by the straight line with slope given by Equation (10.3-9). The wave
may be made as slow as desired by choosing the pitch angle small enough.

#Reference 10a, Chapter 3.
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Let us apply this sheath helix result to derive the Brillouin diagram of
the tape helix. Using Equation (10.3-1) we note that the abscissa in Figure
10.3-3 may be written as SL for the tape helix. Taking the straight line in
Figure 10.3-3 as the fundamental space harmonic for the tape helix, we
draw in additional space harmonics as in Section 8.7, obtaining Figure
10.34.

5

!
Vp=¢C
e
-6 ’// <6
a
-5 <5
3 f
[
—a
¢ -4 <4
/
2 1
-3 / <3
|
-2 1 -1 (4] / [+) =i +1 <2
[+]
-47T -377 -277 - [+] K 27 kY AT
AL

Fic. 10.3-4 Space harmonics corresponding to the straight-line approximation of
the fundamental mode of a sheath helix. The branches are numbered as to the
order of the space harmonie. The velocity-of-light line is shown for tan ¥ = 0.125.

In order to complete the Brillouin diagram for the tape helix we must
include the so-called forbidden regions. The forbidden regions are regions
in the Brillouin diagram for which electromagnetic energy is radiated
away. In these regions the helix may be used as a helical antenna. Thus,
the regions are forbidden in the sense that lossless propagation along the
helix is not possible. The forbidden regions for the tape helix are shown
shaded in Figure 10.3-5.

We can explain the existence of the forbidden region centered about
6L = 0 in the following manner. Consider the form which the space-
harmonic fields take exterior to the helix in this region. This region is
characterized by the fact that all phase velocities are greater than the
velocity of light. Thus, in this region,

B2 < k? (10.3-10)
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n
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Fi16. 10.3-5 Approximate Brillouin diagram for the tape helix, with tany = 0.125.
In this approximation, changing the pitch angle changes only the lower extent of
the forbidden regions. The branches are numbered as to the order of
the space harmonie.

where k = w/c. This means that v, = \B8.% — k? is imaginary. If we put
Ya = jra, we obtain the following expression for E, external to the helix
for the nt* space harmonic,

E.. = D H,V(—r,r)einle #u (10.3-11)
from Equations (10.3-6) and (10.3-8). For large radii the Hankel function
has the asymptotic representation:*

H (=10 = 4 /1"2 re-ﬂw%'w‘?f) (10.3-12)
o0 n

This radial variation corresponds to that of a cylindrical wave propagating
radially to infinity. Thus for 8.2 < k? the helix radiates energy, and by
definition this is a forbidden region.

The other forbidden regions in Figure 10.3-5 are explained as follows.
At any operating frequency all the space harmonics must exist in order that
the boundary conditions be completely satisfied. Thus, if a portion of a
space harmonic lies in the forbidden region described above, all the other
space harmonies within the same frequency range are also forbidden.

These forbidden regions are responsible for the following important
characteristics of the helix. First, the helix will not propagate above a

#Reference 10.2, p. 159.
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certain frequency (wa/c = 3.6 for the conditions of Figure 10.3-5). Second,
frequency stop bands are produced over ranges of frequencies approxi-
mately centered about wa/c = 1, 2, 3, ete.

(b) The Beam Interaction Impedance for a Helix-Type, Slow-Wave Circuit

Next, we derive an approximate expression for the beam interaction im-
pedance for the fundamental space harmonic of the helix. We do this by
finding approximate expressions for the group veloeity and stored energy
per unit length. For the straight-line approximation to the Brillouin
diagram, the group velocity is simply

w

Uy =Vp = 3, (10.3-13)

We shall make use of the approximation v, = B, since u, << ¢ for most
helix tubes.

From a field plot as in Figure 10.3-1, we conclude that the §-component
of electric field is small compared with the r and z components. Thus, we
set B, = 0. As a first approximation, we assume all the stored energy is in
the fundamental space harmonic. For a thin tape helix the space-harmonic
amplitudes must be the same at r = a both inside and outside the helix,
sinee the boundary conditions are identical. Thus, from Equations (10.3-7)
and (10.3-8), we have

E,, = B, (yor)e Bor (10.3-14)
inside the helix, and
I(vo2) -
Ezo = Ba Ko 0 8oz 10.3-1
) (vor)e (10.3-15)

outside the helix. Corresponding to these field components are the follow-
ing radial components:

B, = jBo%Il('y,,r)e‘fﬁ” (10.3-16)
inside the helix and
. Bo Io('Yoa) -
E,, = —jB = 222 K (v gr)e #o? 10.3-1
7 ’YoKo('Yoa) 1(7 ’I‘)e ( 3-17)

outside the helix. The latter relationships may be verified using the di-
vergence relation, Equation (6) of Appendix XII.
The average stored energy per unit length is equal to the peak electric
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stored energy, given by®

Wavg =

o+ 70 | B [T

o

K 2(y.a)

= 1|'an1|/ Bo | I,z(‘y,,a)

389

S / | E.o |? + | By, M12nrdr
2/
7e, | B, |? / [E(vor) + I3 (yor)lrdr

f [K2(yer) + Ki¥(yor)lrdr

1
m] (10.3-18)

The last term in the bracket is approximately equal to 2 over the useful
range of the helix, as shown in Figure 10.3-6. Thus, we have the approxi-

mate expression

Wavg = 27—’95,, | By [T 2(v.a) (10.3-19)
Equation (10.1-19) may be written
for the beam-coupling impedance as
_ || E..["d8
K, = 26,250, W o, (10.3-20)
where the area integral is taken over w 2 _
the cross section of the beam. Intro- s ~——
ducing Equations (10.3-13),(10.3-14), |X
and (10.3-19) we obtain - :,é/ ;
K, = L1 B [12(vor)aS T
2S§-°wzm.,1 B, P12 (v.0)
30
= M2(0)2 E ohms (103-21) .
[} 2 3
where M,«)?is defined as in Equation %a

(10.2-21). M 22 varies between unity
for a thin hollow beam grazing the
helix and 1/1,2(y.a) for a thin solid
beam on the axis. The expression

Fig. 10.3-6 Function of modified Bessel
functions which is approximately equal
to 2 over the useful range of the helix.

given by Equation (10.3-21) for the impedance neglects the energy stored
in the higher-order space harmonics. It can be shown? that the inclusion

2Integrals of Bessel functions and useful identities are given in Reference 9.1, pp.
144-146. These relations may be written in terms of the modified Bessel functions using

Equations (10.3-6).
2Reference 10.8,
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of this additional energy reduces the impedance to approximately half
that given by Equation (10.3-21). Thus, we have the useful approximate
formula

K, Mg(o)zllc—iohms (10.3-22)

for the beam-coupling impedance of a tape helix where k = w/c. Al-
though the foregoing relations are derived for a tape helix, they are also
approximately valid for helices with round wires.

A typical helix tube may be designed for ke = 0.1 and v.a = L.5.
For a thin solid beam on the axis, Equation (10.3-22) gives a value of 55.3
ohms for K, This is considerably larger than values obtained with the
high-power slow-wave structures discussed in the previous section. In
comparing the Brillouin diagrams we see that the helix is capable of syn-
chronism over much larger bandwidths than the high-power structures.
Thus, the helix is superior in all respects except power handling capability.

(c) An Example of a Traveling-Wave Tube with a Helix-Type Slow-Wave
Circuit

Figure 10.3-7 shows the construction of the Western Electric 444A
traveling-wave tube. The slow-wave circuit consists of a molybdenum
wire which is wound in a helix and glazed to three ceramic support rods.
The helix assembly, consisting of the helix and support rods, slides inside a
glass envelope of precise inside diameter. The electron gun is similar to
that shown in Figure 4.5-1(a). An oxide-coated cathode is used.

Input and output connections to the helix are made by means of wave-
guides. The helix is “stretched” at each end and joined onto a cylindrical
tubing which protrudes into the waveguide. This geometry provides a
broadband rf match between the waveguide and the helix.

The magnetic circuit consists of two Alnico V magnets and two soft steel
pole pieces. The circuit provides a nearly uniform axial magnetic focusing
field of 600 oersteds. A number of permalloy “field straightener’” discs are
mounted perpendicular to the axis of the tube. Since these discs act as
equipotential planes with respect to the magnetic field, they force the
magnetic field to be axially symmetric with respect to the axis of the tube.
The magnetic cireuit is surrounded by an external magnetic shield (not
shown in the figure) which reduces the leakage field outside the shield to a
negligible value. The total weight of the magnetic circuit and shield is 85
pounds.

#Reference 10.9; the Bell Telephone Laboratories’ 1789 tube is the prototype for the
Western Electric 444A.
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Some additional facts about the tube are summarized in Table 10.3-1. The
tube is used to provide rf amplification in a radio relay system over a band

TasLE 10.3-1. SoME Facts PERTAINING TO THE 444A
TRAVELING-WAVE TUBE

Helix
Mean diameter, 2a, M. . ... ...c.covvieeininnena.. 2.25
Wire diameter, Mm. . ..........verereeeneneneao.. 0.25
Pitech, Lymm. . ... 0.75
Total turns. .................. [ 187
Length of helix, em....................... ... ... 14

Beam
Voltage, volts. . ... 2400
Current, miliamps. . . ........... ... o 40
Perveance, amps /volts¥2. .. ...... ... ... ... 03 x10°*
Beam power, watts. ...l 96

RF Interaction

Signal frequency, Mc at midband.................. 6175
k@ = @afC.. ..o s 0.148
Axial wavelength, mm. .......................... 4.7*
Total number of wavelengths on helix.............. 30
G e 0.058
QO . e 0.29
Operating power output, watts. . .................. 5
Saturation power output, watts. .................. 12
Power gain at low signal levels,db................ 32-36
Power gain at 5 watts output, db.................. 31-35
Electronic efficiency at saturation, %.............. 12.6

*6.3 turns of helix.

of frequencies 500 Mec wide and centered at 6175 Me. Over this band of
frequencies the power gain is flat to within 0.7 db. The 3-db bandwidth of
the tube is approximately 2400 Mc and is limited primarily by the band-
width of the transitions between the waveguide and helix.

Near the center of the helix, the helix and support rods are coated with
carbon. This provides about 70 db of attenuation on the slow-wave circuit
and prevents reflected waves from the output end of the circuit from causing
oscillations. This forms a severed circuit as in Section 10.2(d).

The anode of the electron gun is operated at about 200 volts higher po-
tential than the helix to prevent positive ions formed by the beam in the
region of the helix from draining toward the cathode and bombarding the
cathode. The air-cooled, copper collector is normally operated at only half
the helix voltage, and hence half the voltage corresponding to the electron
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beam potential. Thus the overall efficiency of conversion of de to rf power
is twice the electronic efficiency.

At the time of writing, 67 per cent of an initial group of 212 444 A tubes is
surviving after two and one-half years of service in the radio relay system,
and extrapolation of the data giving per cent survival vs. life indicates that
half the tubes may survive between four and five years.

Figure 10.3-8 shows a cross-sectional view of a periodic magnetic focusing
(PPM) circuit for a tube similar to the 444A. The circuit uses Alnico VIII
magnets which give a peak axial magnetic field of 1000 oersteds. The
leakage fields from this magnetic circuit are relatively small because of the
short axial length of the individual magnets, and no external shielding is
needed. The magnetic circuit is held together with an epoxy compound
which is not shown in the figure. The total weight of the magnetic circuit
is 8 pounds.”? Waveguides of reduced height are used to couple rf power
to the helix.

The broad bandwidths attainable with traveling-wave amplifiers make
them ideally suited for broadband communication and radar systems.
They are also useful as laboratory amplifiers. Bandwidths of 10 per cent in
high-power tubes and 30 to 50 per cent in helix tubes are common. High
gain tubes of 50 db or more are available; in this case, the circuit has more
than one lossy section to prevent oscillations. Electronic efficiencies are
good, but not as good as in the klystron amplifier. The positive feedback
possible on the slow-wave circuit requires careful design to prevent oscilla-
tions, especially during the rise and fall times in pulsed operation, where the
beam voltage is pulsed on and off.# High regulation and low ripple are re-
quired in the helix voltage supply to prevent undesirable phase-shift
variations.

PROBLEMS

10.1 The figure shows a typical connection of de power supplies to a traveling-
wave amplifier. Assume that the helix does not intercept any of the primary electron
beam; neither does the anode of the electron gun.

(a) Which power supply provides the power that becomes useful rf power out-

put?

(b) The bunched electron beam induces ac currents in the helix. If the helix

were somewhat lossy, these currents would dissipate energy in the form of
heat in the helix. Which power supply provides this energy?

#0ther PPM stacks for similar tubes have weighed less than a pound, using platinum-
cobalt magnets.

3Ag the voltage is increased toward the operating point, the electron velocity passes
through points of synchronism with the phase velocity of the slow-wave structure where
the impedance is very large (such as the point corresponding to L = 2= in Figure
10.2-6). At such a point the danger of oscillation is greatest.
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Problem 10.1

(c) If the beam current is I,, what is the power supplied to the tube by the dc
power supplies?

(d) The efficiency of the tube is defined as the ratio of maximum possible rf
power output to the de power input. Can the efficiency of the tube be raised
by decreasing the potential V¢,? Assume that the exchange of secondary
electrons between the collector and helix can be neglected.

(e) If all the electrons are to be collected by the collector, how small can the
voltage V¢, be made? Give only a qualitative answer.

10.2 The space-charge parameter QC is the product of a dimensionless number Q
and C, the small-signal gain parameter. Show that @ is independent of the beam
current, as long as the beam current density is uniform over the beam cross section
and the beam diameter is constant.

10.3 Using Figure 10.1-3 calculate the gain of a traveling-wave amplifier using
the fundamental space harmonic under the following conditions:

f=9Ge
K, = 80 ohms
QC = 0.50
I, = 10 amps
Vo = 25 kv

d = 0.025

Bo = 725 radians/m

Assume that a circuit sever reduces the over-all gain by 6 db and results in an effec-
tive interaction length ! of 7.62 cm. Neglect relativistic effects. Ans.: 33.3 db.

10.4 The traveling-wave amplifier theory developed in this chapter has assumed
an infinite magnetic field so that transverse motion of the electrons is negligible.
In a practical tube the magnetic field is finite. When a practical tube is operated
with rf power output well below the maximum. (or saturated) value, the percentage
of the electron beam intercepted on the slow-wave structure is negligible.. When
the rf power input is increased so that the output power approaches saturation, the
beam interception on the slow-wave structure often becomes 2 to 5 per cent of the
total beam current. Explain qualitatively the reason for this increase.

10.5 Show that the apex of the triangle bounding the forbidden region for a helix
is given by wa/c = wa/L.
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10.6 Show that the beam-coupling impedance K, for a helix-type traveling-wave
amplifier utilizing the fundamental space harmonic is given by

K, = [IXy:b) — I*(v.b)1K.(0)

where b is the radius of the electron beam which is centered on the axis and K,(0)
is the impedance for an infinitesimally thin beam on the axis. The following integral
will be useful:

/; ' r1 2(yr)dr = %2[1 Ayr) — I¥(yn)]

10.7 Using the result of the previous problem and Equation (10.3-22), calculate
the impedance of a traveling-wave amplifier with ke = 0.2 and y,e = 1.0. The
diameter of the electron beam is half the helix diameter.

10.8 When positive ions are present in an electron beam, the beam diameter tends
to shrink, since the electron space-charge forces of repulsion are neutralized. When
the collector voltage of a traveling-wave amplifier is depressed below that of the
slow-wave structure, the ions are drained out of the beam into the collector and the
beam diameter increases. What will be the effect on the gain of the amplifier when
the collector voltage is depressed, assuming that the amount of electrons inter-
cepted by the slow-wave structure is negligible?

10.9 A traveling-wave amplifier, with voltages applied as in Problem 10.1,
operates under the conditions b = QC = d = 0, so that the gain is given by Equa-
tion (10.1-75). Amplitude modulation of the rf output may be obtained by varying
the anode voltage V.., with the other voltages and rf power input held constant.

(a) Show that the percentage change in rf power output is related to the per-

centage change in anode voltage by the expression:

dPout dVAa
Pow = 5.45CN Vo

(b) Which voltage should be varied to produce phase modulation on the rf
output with a minimum of amplitude modulation?

10.10 The slow-wave structure of a traveling-wave amplifier is severed perfectly
at a point sufficiently far from the input that only the growing wave is of impor-
tance. (Perfect severing implies that circuit waves from either direction are ab-
sorbed without reflection and also that the sever is so short that the beam con-
vection current and velocity are unchanged before and after the sever.) Find the
loss in over-all gain of the device in db due to the severing. Assume small C, and
b = QC = d = 0. Hint: Rewrite and solve Equations (10.1-53) for the new initial
values of electric field, velocity, and convection current just beyond the sever. The
electric field is zero; the velocity and convection current are continuous from just
before the sever. Find the ratio of the magnitudes of the growing wave E.n just
before and just after the sever. Ans.: 3.52db.
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